Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23289, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169946

RESUMO

Ethnopharmacological relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant. Aim of the study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes. However, some of the synthetic inhibitors for this enzyme available on the market may cause undesirable side effects. Therefore, it is important to identify new inhibitors of DPP-IV and to understand their interaction with this enzyme. Methods: In this study, four cannabinoids (cannabidiol, cannabigerol, cannabinol and Δ9-tetrahydrocannabinol) were evaluated for their inhibitory effects against recombinant human DPP-IV and their potential inhibition mechanism was explored using both in vitro and in silico approaches. Results: All four cannabinoids resulted in a dose-dependent response with IC50 values of between 4.0 and 6.9 µg/mL. Kinetic analysis revealed a mixed mode of inhibition. CD spectra indicated that binding of cannabinoids results in structural and conformational changes in the secondary structure of the enzyme. These findings were supported by molecular docking studies which revealed best docking scores at both active and allosteric sites for all tested inhibitors. Furthermore, molecular dynamics simulations showed that cannabinoids formed a stable complex with DPP-IV protein via hydrogen bonds at an allosteric site, suggesting that cannabinoids act by either inducing conformational changes or blocking the active site of the enzyme. Conclusion: These results demonstrated that cannabinoids may modulate DPP-IV activity and thereby potentially assist in improving glycaemic regulation in type 2 diabetes.

2.
World J Microbiol Biotechnol ; 35(12): 187, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728656

RESUMO

This review examines the recent models describing the mode of action of various xylanolytic enzymes and how these enzymes can be applied (sequentially or simultaneously) with their distinctive roles in mind to achieve efficient xylan degradation. With respect to homeosynergy, synergism appears to be as a result of ß-xylanase and/or oligosaccharide reducing-end ß-xylanase liberating xylo-oligomers (XOS) that are preferred substrates of the processive ß-xylosidase. With regards to hetero-synergism, two cross relationships appear to exist and seem to be the reason for synergism between the enzymes during xylan degradation. These cross relations are the debranching enzymes such as α-glucuronidase or side-chain cleaving enzymes such as carbohydrate esterases (CE) removing decorations that would have hindered back-bone-cleaving enzymes, while backbone-cleaving-enzymes liberate XOS that are preferred substrates of the debranching and side-chain-cleaving enzymes. This interaction is demonstrated by high yields in co-production of xylan substituents such as arabinose, glucuronic acid and ferulic acid, and XOS. Finally, lytic polysaccharide monooxygenases (LPMO) have also been implicated in boosting whole lignocellulosic biomass or insoluble xylan degradation by glycoside hydrolases (GH) by possibly disrupting entangled xylan residues. Since it has been observed that the same enzyme (same Enzyme Commission, EC, classification) from different GH or CE and/or AA families can display different synergistic interactions with other enzymes due to different substrate specificities and properties, in this review, we propose an approach of enzyme selection (and mode of application thereof) during xylan degradation, as this can improve the economic viability of the degradation of xylan for producing precursors of value added products.


Assuntos
Xilanos/metabolismo , Xilosidases/metabolismo , Arabinose/metabolismo , Biodegradação Ambiental , Ácidos Cumáricos/metabolismo , Endo-1,4-beta-Xilanases , Esterases/metabolismo , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases , Oligossacarídeos/metabolismo , Polissacarídeos , Especificidade por Substrato , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA