Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139270

RESUMO

Obesity prevalence is becoming a serious global health and economic issue and is a major risk factor for concomitant diseases that worsen the quality and duration of life. Therefore, the urgency of the development of novel therapies is of a particular importance. A previous study of ours revealed that the natural pterocarpan, maackiain (MACK), significantly inhibits adipogenic differentiation in human adipocytes through a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Considering the observed anti-adipogenic potential of MACK, we aimed to further elucidate the molecular mechanisms that drive its biological activity in a Caenorhabditis elegans obesity model. Therefore, in the current study, the anti-obesogenic effect of MACK (25, 50, and 100 µM) was compared to orlistat (ORST, 12 µM) as a reference drug. Additionally, the hybrid combination between the ORST (12 µM) and MACK (100 µM) was assessed for suspected synergistic interaction. Mechanistically, the observed anti-obesogenic effect of MACK was mediated through the upregulation of the key metabolic regulators, namely, the nuclear hormone receptor 49 (nhr-49) that is a functional homologue of the mammalian PPARs and the AMP-activated protein kinase (aak-2/AMPK) in C. elegans. Collectively, our investigation indicates that MACK has the potential to limit lipid accumulation and control obesity that deserves future developments.


Assuntos
Proteínas de Caenorhabditis elegans , Pterocarpanos , Animais , Humanos , Caenorhabditis elegans/metabolismo , Pterocarpanos/farmacologia , Restrição Calórica , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Obesidade/tratamento farmacológico , Lipídeos/farmacologia , Mamíferos/metabolismo
2.
Biomed Pharmacother ; 149: 112908, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367764

RESUMO

Obesity is a global health burden for which we do not yet have effective treatments for prevention or therapy. Plants are an invaluable source of bioactive leads possessing anti-adipogenic potential. Ethnopharmacological use of Ononis spinosa L. roots (OSR) for treatment of obesity and metabolic disorders requires а scientific rationale. The current study examined the anti-adipogenic capacity of OSR and its secondary metabolites ononin (ONON) and maackiain (MACK) in human adipocytes as an in vitro model of obesity. Both ONON and MACK diminished lipid accumulation during adipocyte differentiation. Molecular docking analysis exposed the potential interactions between MACK or ONON and target regulatory adipogenic proteins. Furthermore, results from an RT-qPCR analysis disclosed significant upregulation of AMPK by MACK and ONON treatment. In addition, ONON increased SIRT1, PI3K and ACC mRNA expression, while MACK notably downregulated CEBPA, AKT, SREBP1, ACC and ADIPOQ. The protein level of PI3K, C/EBPα, PPARγ and adiponectin was reduced upon MACK treatment in a concentration-dependent manner. Similarly, ONON suppressed PI3K, PPARγ and adiponectin protein abundance. Finally, our study provides evidence that ONON exerts anti-adipogenic effect by upregulation of SIRT1 and inhibition of PI3K, PPARγ and adiponectin, while MACK induced strong inhibitory effect on adipogenesis via hampering PI3K, PPARγ/C/EBPα signaling and anti-lipogenic effect through downregulation of SREBP1 and ACC. Even though OSR does not hamper adipogenic differentiation, it could be exploited as a source of natural leads with anti-adipogenic potential. The multidirectional mechanism of action of MACK warrant further validation in the context of in vivo obesity models.


Assuntos
Adipócitos , Adipogenia , Fármacos Antiobesidade , PPAR gama , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Fármacos Antiobesidade/farmacologia , Glucosídeos/farmacologia , Humanos , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pterocarpanos/farmacologia , Sirtuína 1/metabolismo
3.
Front Pharmacol ; 12: 707507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483915

RESUMO

Obesity is a persistent and continuously expanding social health concern. Excessive fat mass accumulation is associated with increased risk of chronic diseases including diabetes, atherosclerosis, non-alcoholic steatohepatitis, reproductive dysfunctions and certain types of cancer. Alchemilla monticola Opiz. is a perennial plant of the Rosaceae family traditionally used to treat inflammatory conditions and as a component of weight loss herbal mixtures. In the search for bioactive leads with potential anti-adipogenic effect from A. monticola extract (ALM), we have employed nuclear magnetic resonance (NMR) based metabolomics to obtain data for the phytochemical profile of the extract. Further, molecular docking simulation was performed against key adipogenic targets for selected pure compounds, present in the ALM extract. Evaluation of the biological activity was done in human adipocytes exposed to ALM (5, 10 and 25 µg/ml), pure astragalin (AST) or quercitrin (QUE) both at the concentrations of 5, 10 and 25 µM. Investigation of the molecular pathways involved was performed through real-time quantitative PCR and Western blot analyses. According to the docking predictions strong putative affinity was revealed for both AST and QUE towards peroxisome proliferator-activated receptor gamma (PPARγ) and phosphoinositide 3-kinase (PI3K). Assessment of the intracellular lipid accumulation revealed anti-adipogenic activity of ALM. Correspondingly, the expression of the adipogenic genes CCAAT/enhancer-binding protein alpha (CEBPA) and PPARG was downregulated upon ALM and AST treatment. The Western blotting results exposed protein kinase B (AKT), PI3K and PPARγ as targets for the inhibitory effect of ALM and AST on adipogenesis. Collectively, we provide a broader insight of the phytochemical composition of A. monticola. Additionally, we demonstrate the anti-adipogenic effect of ALM and its active compound AST in human adipocytes. Furthermore, PI3K/AKT signaling pathway is identified to mediate the ALM anti-adipogenic action. Hence, the ALM extract and its secondary metabolite AST are worth further exploration as potentially active agents in obesity management.

4.
Biomed Pharmacother ; 141: 111934, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323694

RESUMO

The escalation in the global prevalence of obesity has focused attention on finding novel approaches for its management. Ziziphus jujuba Mill. (ZJL) leaf extract is reported as a traditional remedy for diverse pathological conditions, including obesity. The present study investigated whether ZJL affects adipogenic differentiation in human adipocytes. Additionally, following metabolite profiling of the extract, apigenin (APG), betulinic acid (BA) and maslinic acid (MA) were selected for biological activity evaluation. The possible interactions between APG, BA, MA and target proteins with a central role in adipogenesis were assessed through molecular docking. The potential mechanisms of ZJL, APG, BA and MA were identified using transcriptional analysis through real-time quantitative PCR and protein abundance evaluation by Western blotting. The obtained results revealed a concentration-dependent reduction of accumulated lipids after ZJL, BA and MA application. The key adipogenic transcription factors peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer-binding protein alpha (C/EBPα) were strongly decreased at a protein level by all treatments. Moreover, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was found to be involved in the anti-adipogenic effect of ZJL, APG and BA. Collectively, our findings indicate that ZJL and its pure compounds hampered adipocyte differentiation through PI3K/AKT inhibition. Among the selected compounds, BA exhibits the most promising anti-adipogenic activity. Furthermore, being a complex mixture of phytochemicals, the ZJL extract could be utilized as source of yet unknown bioactive leads with potential implementation in obesity management.


Assuntos
Adipogenia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ziziphus , Adipogenia/fisiologia , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular/métodos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA