Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 46: 101971, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797019

RESUMO

Cholangiocarcinoma (CCA) is a devastating malignancy characterized by aggressive tumor growth and limited treatment options. Dysregulation of the Hippo signaling pathway and its downstream effector, Yes-associated protein (YAP), has been implicated in CCA development and progression. In this study, we investigated the effects of Isoalantolactone (IALT) on CCA cells to elucidate its effect on YAP activity and its potential clinical significance. Our findings demonstrate that IALT exerts cytotoxic effects, induces apoptosis, and modulates YAP signaling in SNU478 cells. We further confirmed the involvement of the canonical Hippo pathway by generating LATS1/LATS2 knockout cells, highlighting the dependence of IALT-mediated apoptosis and YAP phosphorylation on the Hippo-LATS signaling axis. In addition, IALT suppressed cell growth and migration, partially dependent on YAP-TEAD activity. These results provide insights into the therapeutic potential of targeting YAP in CCA and provide a rationale for developing of YAP-targeted therapies for this challenging malignancy.

2.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366363

RESUMO

Histone deacetylase 11 (HDAC11) has been implicated in the pathogenesis of metabolic diseases characterized by chronic low-grade inflammation, such as obesity. However, the influence of HDAC11 on inflammation and the specific effect of HDAC11 on the palmitic acid (PA)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation are poorly understood. The effect of PA treatment on HDAC11 activity and the NLRP3 inflammasome was investigated in human peripheral blood mononuclear cells and THP-1 cells. The PA-induced responses of key markers of NLRP3 inflammasome activation, including NLRP3 gene expression, caspase-1 p10 activation, cleaved IL-1ß production, and extracellular IL-1ß release, were assessed as well. The role of HDAC11 was explored using a specific inhibitor of HDAC11 and by knockdown using small interfering (si)HDAC11 RNA. The relationship between HDAC11 and yes-associated protein (YAP) in the PA-induced NLRP3 inflammasome was investigated in THP-1 cells with HDAC11 or YAP knockdown. Following PA treatment, HDAC11 activity and protein levels increased significantly, concomitant with activation of the NLRP3 inflammasome. Notably, PA-induced the upregulation of NLRP3, caspase-1 p10 activation, the production of cleaved IL-1ß, and the release of IL-1ß into the extracellular space, all of which were attenuated by FT895 treatment and by HDAC11 knockdown. In THP-1 cells, PA induced the expression of YAP and its interaction with NLRP3, resulting in NLRP3 inflammasome activation, whereas both were inhibited by FT895 and siHDAC11 RNA. These findings demonstrate a pivotal role for HDAC11 in the PA-induced activation of the NLRP3 inflammasome. HDAC11 inhibition thus represents a promising therapeutic strategy for mitigating NLRP3 inflammasome-related inflammation in the context of obesity.


Assuntos
Histona Desacetilases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Caspase 1/genética , Caspase 1/metabolismo , Histona Desacetilases/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/genética , Leucócitos Mononucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade , Palmitatos , Ácido Palmítico/farmacologia , RNA , Células THP-1 , Proteínas de Sinalização YAP/metabolismo
3.
Cell Death Dis ; 15(1): 76, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245531

RESUMO

The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transformação Celular Neoplásica/metabolismo , Proliferação de Células/fisiologia , Fosfoproteínas/metabolismo , Mamíferos
4.
J Proteomics ; 261: 104582, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427800

RESUMO

Phosphorylation is an essential regulatory mechanism in cells that modifies diverse substrates, such as proteins, carbohydrates, lipids, and nucleotides. Protein phosphorylation regulates function, subcellular localization, and protein-protein interactions. Protein kinases and phosphatases catalyze this reversible mechanism, subsequently influencing signal transduction. The dysregulation of protein phosphorylation leads to many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Therefore, analyzing the phosphorylation status and identifying protein phosphorylation sites are critical for elucidating the biological functions of specific phosphorylation events. Unraveling the critical phosphorylation events associated with diseases and specific signaling pathways is promising for drug discovery. To date, highly accurate and sensitive approaches have been developed to detect the phosphorylation status of proteins. In this review, we discuss the application of Phos-tag to elucidate the biological functions of Hippo pathway components, with emphasis on the identification and quantitation of protein phosphorylation under physiological and pathological conditions. SIGNIFICANCE: We here provide a comprehensive overview of Phos-tag technique-based strategies to identify phosphorylated proteins at the cellular level in the Hippo-YAP pathway that comprises a major driving force for cellular homeostasis. We clarify the links of applying Phos-tag in elucidating the biological functions of the Hippo pathway components with particular attention to the identification and quantitation of protein phosphorylation under physiological and pathological conditions. We believe that our paper will make a significant contribution to the literature because these detailed phosphorylation modifications and functional diversity of the Hippo pathway components in physiological and pathological processes are only beginning to come to the fore, highlighting the potential for discovering new therapeutic targets. Moreover, this line of research can provide further insight into the inextricable link between phos-tag applications as a molecular tool and cellular signaling modality, offering new directions for an integrated research program toward understanding cellular regulation at the molecular level. Given the broad research and practical applications, we believe that this paper will be of interest to the readership of your journal.


Assuntos
Proteínas Quinases , Piridinas , Fosfoproteínas/análise , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia
5.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578701

RESUMO

Nanoparticles (NPs) in biomedical applications have benefits owing to their small size. However, their intricate and sensitive nature makes an evaluation of the adverse effects of NPs on health necessary and challenging. Since there are limitations to conventional toxicological methods and omics analyses provide a more comprehensive molecular profiling of multifactorial biological systems, omics approaches are necessary to evaluate nanotoxicity. Compared to a single omics layer, integrated omics across multiple omics layers provides more sensitive and comprehensive details on NP-induced toxicity based on network integration analysis. As multi-omics data are heterogeneous and massive, computational methods such as machine learning (ML) have been applied for investigating correlation among each omics. This integration of omics and ML approaches will be helpful for analyzing nanotoxicity. To that end, mechanobiology has been applied for evaluating the biophysical changes in NPs by measuring the traction force and rigidity sensing in NP-treated cells using a sub-elastomeric pillar. Therefore, integrated omics approaches are suitable for elucidating mechanobiological effects exerted by NPs. These technologies will be valuable for expanding the safety evaluations of NPs. Here, we review the integration of omics, ML, and mechanobiology for evaluating nanotoxicity.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33628300

RESUMO

Yes-associated protein (YAP)/WW domain-containing transcription factor (TAZ) is critical for cell proliferation, survival, and self-renewal. It has been shown to play a crucial oncogenic role in many different types of tumors. In this study, we investigated the antitumor effect of the extracts of Perilla frutescens var. acuta (Odash.) Kudo leaves (PLE) on Hippo-YAP/TAZ signaling. PLE induced the phosphorylation of YAP/TAZ, thereby inhibiting their activity. In addition, the treatment suppresses YAP/TAZ transcriptional activity via the dissociation of the YAP/TAZ-TEAD complex. To elucidate the molecular mechanism of PLE in the regulation of YAP activity, we treated WT and cell lines with gene knockout (KO) for Hippo pathway components with PLE. The inhibitory effects of PLE on YAP-TEAD target genes were significantly attenuated in LATS1/2 KO cells. Moreover, we found the antitumor effect of PLE on MDA-MB-231 and BT549, both of which are triple-negative breast cancer (TNBC) cell lines. PLE reduced the viability of TNBC cells in a dose-dependent manner and induced cell apoptosis. Further, PLE inhibited the migration ability in MDA-MB-231 cells. This ability was weakened in YAP and TEAD-activated clones suggesting that the inhibition of migration by PLE is mainly achieved by regulating YAP activity. Taken together, the results of this study indicate that PLE suppressed cell growth and increased the apoptosis of breast cancer (BC) cells via inactivation of YAP activity in a LATS1/2-dependent manner.

7.
Biochem Biophys Res Commun ; 528(1): 154-159, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451085

RESUMO

Renal fibrosis is one of the characteristic features of chronic kidney disease (CKD). Fibrotic change not only impairs the filtration function of the kidney but is also recognized as a marker of end-stage renal disease (ESRD). The epithelial to mesenchymal transition (EMT) is known to play a role in embryonic development and organ formation, but it is getting much attention for its pathological role in the invasion and metastasis of carcinoma. Recently, it has also been reported that EMT plays a role in the formation of fibrosis during chronic inflammation. EMT contribute to the development of the fibrosis in CKD. Moreover, glomerular podocytes and tubular epithelial cells can also undergo mesenchymal transition in CKD. Hesperetin is a flavonoid present in citrus and is well known for its antioxidant and anti-inflammatory properties. In this study, we investigated the effects of hesperetin on the EMT-elicited podocytes. First, we generated an EMT model by treating transforming growth factor (TGF)-ß1, a potent inducer of EMT to the podocytes. TGF-ß1 decreased the expression of epithelial markers such as nephrin, zonula occludens-1 (ZO-1), while it increased the mesenchymal markers, including fibronectin (FN), vimentin, and α-smooth muscle actin (α-SMA) in the podocytes. Hesperetin suppressed EMT-like changes elicited by TGF-ß1. Interestingly, hesperetin did not interfere with the Smad signaling-the classical TGF-ß signaling-pathway, which was confirmed by the experiment with smad 2/3 -/- podocytes. Instead, hesperetin suppressed EMT-like changes by inhibiting the mTOR pathway-one of the alternative TGF-ß signaling pathways. In conclusion, hesperetin has a protective effect on the TGF-ß1 elicited EMT-like changes of podocytes through regulation of mTOR pathway. It could be a good candidate for the suppression of kidney fibrosis in various CKD.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hesperidina/farmacologia , Podócitos/metabolismo , Podócitos/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/toxicidade , Morte Celular/efeitos dos fármacos , Hesperidina/química , Humanos , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
8.
Nucleic Acids Res ; 48(7): 3678-3691, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123907

RESUMO

Genomic instability resulting from defective DNA damage responses or repair causes several abnormalities, including progressive cerebellar ataxia, for which the molecular mechanisms are not well understood. Here, we report a new murine model of cerebellar ataxia resulting from concomitant inactivation of POLB and ATM. POLB is one of key enzymes for the repair of damaged or chemically modified bases, including methylated cytosine, but selective inactivation of Polb during neurogenesis affects only a subpopulation of cortical interneurons despite the accumulation of DNA damage throughout the brain. However, dual inactivation of Polb and Atm resulted in ataxia without significant neuropathological defects in the cerebellum. ATM is a protein kinase that responds to DNA strand breaks, and mutations in ATM are responsible for Ataxia Telangiectasia, which is characterized by progressive cerebellar ataxia. In the cerebella of mice deficient for both Polb and Atm, the most downregulated gene was Itpr1, likely because of misregulated DNA methylation cycle. ITPR1 is known to mediate calcium homeostasis, and ITPR1 mutations result in genetic diseases with cerebellar ataxia. Our data suggest that dysregulation of ITPR1 in the cerebellum could be one of contributing factors to progressive ataxia observed in human genomic instability syndromes.


Assuntos
Ataxia Cerebelar/genética , Cerebelo/metabolismo , Metilação de DNA , DNA Polimerase beta/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo/embriologia , Encéfalo/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Citosina/metabolismo , Dano ao DNA , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Knockout , Neurogênese/genética
9.
Cells ; 8(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100975

RESUMO

The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Epigênese Genética , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Microambiente Tumoral , Proteínas de Sinalização YAP
10.
Mol Cell ; 73(6): 1138-1149.e6, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901564

RESUMO

The nuclear factor (NF)-κB pathway plays a central role in inflammatory and immune responses, with aberrant activation of NF-κB signaling being implicated in various human disorders. Here, we show that mammalian ste20-like kinase 1 (MST1) is a previously unrecognized component of the tumor necrosis factor α (TNFα) receptor 1 signaling complex (TNF-RSC) and attenuates TNFα-induced NF-κB signaling. Genetic ablation of MST1 in mouse embryonic fibroblasts and bone marrow-derived macrophages potentiated the TNFα-induced increase in IκB kinase (IKK) activity, as well as the expression of NF-κB target genes. TNFα induced the recruitment of MST1 to TNF-RSC and its interaction with HOIP, the catalytic component of the E3 ligase linear ubiquitin assembly complex (LUBAC). Furthermore, MST1 activated in response to TNFα stimulation mediates the phosphorylation of HOIP and thereby inhibited LUBAC-dependent linear ubiquitination of NEMO/IKKγ. Together, our findings suggest that MST1 negatively regulates TNFα-induced NF-κB signaling by targeting LUBAC.


Assuntos
Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Fibroblastos/enzimologia , Células HEK293 , Humanos , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Biomed Pharmacother ; 112: 108659, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784934

RESUMO

ER stress is an early event of acute kidney injury and has been linked to accelerate the development of chronic kidney disease. Therefore, the compounds that can mimic ER stress inhibitor may confer regulatory effects on ER stress induced apoptosis. In this study, we investigated the protective effects of flavonoid morin against ER stress induced apoptosis in human renal proximal tubular HK-2 cells. Morin downregulated the expression of GRP78, central regulator of ER stress response, induced by ER stress inducer tunicamycin. Interestingly, morin selectively inhibited the IRE1 pathway among the three major arms of the ER stress responses. The increased expression of XBP1-sp, phosphor-IRE-1α, and phosphor-JNK by TM were markedly suppressed by the pretreatment of morin. Morin also decreased the intracellular ROS production and the apoptosis induced by TM in HK-2 cells. Taken together, our finding show that morin acts as an ER stress inhibitor, and can be a good candidate in various ER-stress associated kidney diseases.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Flavonoides/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
12.
BMB Rep ; 51(1): 14-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29301609

RESUMO

Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].


Assuntos
Nanopartículas/efeitos adversos , Nanopartículas/toxicidade , Animais , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/tendências , Genômica/métodos , Genômica/tendências , Humanos , Metabolômica/métodos , Metabolômica/tendências , Proteômica/métodos , Proteômica/tendências
13.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2356-2368, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888991

RESUMO

Leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein, is a key causative factor in Parkinson's disease (PD). Identification of novel substrates and the molecular mechanisms underlying the effects of LRRK2 are essential for understanding the pathogenesis of PD. In this study, we showed that LRRK2 played an important role in neuronal cell death by directly phosphorylating and activating apoptosis signal-regulating kinase 1 (ASK1). LRRK2 phosphorylated ASK1 at Thr832 that is adjacent to Thr845, which serves as an autophosphorylation site. Moreover, results of binding and kinase assays showed that LRRK2 acted as a scaffolding protein by interacting with each components of the ASK1-MKK3/6-p38 MAPK pathway through its specific domains and increasing the proximity to downstream targets. Furthermore, LRRK2-induced apoptosis was suppressed by ASK1 inhibition in neuronal stem cells derived from patients with PD. These results clearly indicate that LRRK2 acts as an upstream kinase in the ASK1 pathway and plays an important role in the pathogenesis of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , MAP Quinase Quinase Quinase 5/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Apoptose/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Fosforilação , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
BMB Rep ; 50(2): 71-78, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27916025

RESUMO

The Hippo signaling pathway plays an essential role in adult-tissue homeostasis and organ-size control. In Drosophila and vertebrates, it consists of a highly conserved kinase cascade, which involves MST and Lats that negatively regulate the activity of the downstream transcription coactivators, YAP and TAZ. By interacting with TEADs and other transcription factors, they mediate both proliferative and antiapoptotic gene expression and thus regulate tissue repair and regeneration. Dysregulation or mutation of the Hippo pathway is linked to tumorigenesis and cancer development. Recent studies have uncovered multiple upstream inputs, including cell density, mechanical stress, G-protein-coupled receptor (GPCR) signaling, and nutrients, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway as effector of these biophysical cues and its potential implications in tissue homeostasis and cancer. [BMB Reports 2017; 50(2): 71-78].


Assuntos
Fenômenos Biofísicos/fisiologia , Proteínas de Drosophila/fisiologia , Espaço Extracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transativadores/fisiologia , Adulto , Animais , Drosophila , Espaço Extracelular/metabolismo , Humanos , Transdução de Sinais/fisiologia , Estresse Mecânico , Vertebrados , Proteínas de Sinalização YAP
15.
Biochim Biophys Acta ; 1863(2): 179-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547035

RESUMO

p21-Activated kinase 1 (PAK1) is a serine/threonine protein kinase implicated in cytoskeletal remodeling and cell motility. Recent studies have shown that it also promotes cell proliferation, regulates apoptosis, and increases cell transformation and invasion. In this study, we showed that NOTCH1 intracellular domain (NOTCH1-IC) negatively regulated PAK1 signaling pathway. We found a novel interaction between NOTCH1-IC and PAK1. Overexpression of NOTCH1-IC decreased PAK1-induced integrin-linked kinase 1 (ILK1) phosphorylation, whereas inhibition of NOTCH1 signaling increased PAK1-induced ILK1 phosphorylation. Notably, ILK1 phosphorylation was higher in PS1,2(-/-) cells than in PS1,2(+/+) cells. As expected, overexpression of NOTCH1-IC decreased ILK1-induced phosphorylation of glycogen synthase kinase 3 beta (GSK-3beta). Furthermore, NOTCH1-IC disrupted the interaction of PAK1 with ILK1 and altered PAK1 localization by directly interacting with it. This inhibitory effect of NOTCH1-IC on the PAK1 signaling pathway was mediated by the binding of NOTCH1-IC to PAK1 and by the alteration of PAK1 localization. Together, these results suggest that NOTCH1-IC is a new regulator of the PAK1 signaling pathway that directly interacts with PAK1 and regulates its shuttling between the nucleus and the cytoplasm.


Assuntos
Receptor Notch1/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Sítios de Ligação/genética , Movimento Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Microscopia Confocal , Modelos Biológicos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptor Notch1/genética , Quinases Ativadas por p21/genética
16.
Nat Commun ; 6: 8357, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26437443

RESUMO

The Hippo pathway plays a central role in tissue homoeostasis, and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include a kinase cascade of MST1/2 and LATS1/2 and the transcription co-activators YAP/TAZ. In response to stimulation, LATS1/2 phosphorylate and inhibit YAP/TAZ, the main effectors of the Hippo pathway. Accumulating evidence suggests that MST1/2 are not required for the regulation of YAP/TAZ. Here we show that deletion of LATS1/2 but not MST1/2 abolishes YAP/TAZ phosphorylation. We have identified MAP4K family members--Drosophila Happyhour homologues MAP4K1/2/3 and Misshapen homologues MAP4K4/6/7-as direct LATS1/2-activating kinases. Combined deletion of MAP4Ks and MST1/2, but neither alone, suppresses phosphorylation of LATS1/2 and YAP/TAZ in response to a wide range of signals. Our results demonstrate that MAP4Ks act in parallel to and are partially redundant with MST1/2 in the regulation of LATS1/2 and YAP/TAZ, and establish MAP4Ks as components of the expanded Hippo pathway.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Aciltransferases , Animais , Western Blotting , Carcinogênese/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila , Imunofluorescência , Quinases do Centro Germinativo , Células HEK293 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Homeostase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinase 3 , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
17.
Cell ; 162(4): 780-94, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276632

RESUMO

The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here, we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/ß-catenin signaling. Mechanistically, we delineate the "alternative Wnt-YAP/TAZ signaling axis" that consists of Wnt-FZD/ROR-Gα12/13-Rho GTPases-Lats1/2 to promote YAP/TAZ activation and TEAD-mediated transcription. YAP/TAZ mediate the biological functions of alternative Wnt signaling, including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/ß-catenin signaling. Together, our work establishes YAP/TAZ as critical mediators of alternative Wnt signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Receptores Frizzled/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP , beta Catenina/metabolismo
18.
J Neurochem ; 134(5): 799-810, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25996556

RESUMO

The gamma-secretase is a multiprotein complex that cleaves many type-I membrane proteins, such as the Notch receptor and the amyloid precursor protein. Nicastrin (NCT) is an essential component of the multimeric gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we found that Akt1 markedly regulated the protein stability of NCT. Importantly, the kinase activity of Akt1 was essential for the inhibition of gamma-secretase activity through degradation of NCT. Notably, the protein level of endogenous NCT was higher in shAkt1-expressing cells than in shCon-expressing cells. Akt1 physically interacted with NCT and mediated its degradation through proteasomal and lysosomal pathways. We also found that Akt1 phosphorylates NCT at Ser437, resulting in a significant reduction in NCT protein stability. Importantly, a phospho-deficient mutation in NCT at Ser437 stabilized its protein levels. Collectively, our results reveal that Akt1 functions as a negative regulator of the gamma-secretase activity through phosphorylation and degradation of NCT. Generation of the amyloid peptide (A-beta) and the amyloid precursor protein (APP) intracellular domain (AICD) can happen by sequential proteolysis of APP by beta and gamma-secretase. The gamma-secretase complex consists of four essential proteins: presenilin (PS1 or PS2), presenilin enhancer 2 (PEN-2), anterior pharynx-defective 1 (APH-1), and the Nicastrin (NCT). NCT can interact and be phosphorylated by Akt1, and phosphorylated NCT promotes its proteasomal and lysosomal degradation. As a result, Akt1 plays role in reducing gamma-secretase activity through phosphorylation-dependent regulation of NCT protein degradation.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo
19.
Nat Cell Biol ; 17(4): 500-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751140

RESUMO

YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumour suppressor pathway and controls cell growth, tissue homeostasis and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo-YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP Ser 94, a residue essential for the interaction with TEAD, thus disrupting the YAP-TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo-YAP pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Fosfoproteínas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células 3T3 , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Citoplasma , Proteínas de Ligação a DNA/metabolismo , Metabolismo Energético , Ativação Enzimática , Células HEK293 , Células HeLa , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
20.
Nat Commun ; 5: 4241, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24980141

RESUMO

The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection.


Assuntos
Cardiomiopatia Hipertrófica/enzimologia , Lisossomos/enzimologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/prevenção & controle , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/enzimologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA