Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126387, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38876028

RESUMO

Breast cancer, a globally prevalent malignancy, is characterized by pronounced heterogeneity. Accurate subtyping requires the simultaneous detection of different biomarkers, which is crucial for personalized treatment strategies. However, existing methodologies are hindered by limited versatility and sensing performance. To overcome these hurdles, this study presents a universal 3D-Hybridization Chain Reaction (3D-HCR) system for RNA detection and subtype-specific diagnosis of breast cancer. The system integrated a universal trigger for HCR, thereby circumventing the need for complex sequence design and enabling the analysis of various RNA targets. Leveraging the spatial-confinement effect offered by DNA nanocarriers, this system exhibited superior amplification efficiency, achieving detection limits of 3.83 pM and 4.96 pM for PD-L1 mRNA and miR-21, respectively. Importantly, the system could differentiate between triple-negative breast cancer and estrogen receptor-positive breast cancer in both living cells and clinical tissues. These findings underscore the potential of the universal 3D-HCR system as a promising tool in clinical diagnostics. With its proven proficiency in breast cancer diagnostics and versatility in RNA analysis, this system holds the promise of broadening the horizons of precision medicine.

2.
Mikrochim Acta ; 191(6): 333, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753167

RESUMO

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.


Assuntos
COVID-19 , Limite de Detecção , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Nanosferas/química , DNA/química , Sequências Repetidas Invertidas , Animais , Teste de Ácido Nucleico para COVID-19/métodos , Bovinos , Reagentes de Ligações Cruzadas/química , Saliva/virologia
3.
J Mater Chem B ; 11(47): 11310-11318, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982342

RESUMO

The intensive investigation of chemodynamic therapy (CDT) for tumor eradication revealed that the therapeutic effects of this ROS-mediated therapy are limited by endogenous reductants and inefficient Fenton-like reactions. In this study, we developed a new Fe/Cu-AuNP-PEG nanocomposite to enhance CDT and provide a synergistic treatment for tumors. The Fe/Cu-AuNP-PEG nanocomposite demonstrated effective ˙OH production and high photothermal conversion efficiency under 808 nm illumination, which promoted the ˙OH production, thereby enhancing the CDT efficacy and exhibiting a synergistic treatment for cancer. More importantly, the Fe/Cu-AuNP-PEG nanocomposite showed the ability to deplete GSH and catalyze glucose to generate H2O2, which facilitated the Fenton-like reaction and reduced the antioxidant properties of tumors, further improving the efficacy of CDT. Therefore, the Fe/Cu-AuNP-PEG nanocomposite, with horseradish peroxidase-like, glutathione peroxidase-like, and glucose oxidase-like activities, is a promising anti-tumor agent for integrating enhanced CDT and photothermal therapy (PTT) with the enhancement of synergistic therapeutic effects.


Assuntos
Nanocompostos , Neoplasias , Microambiente Tumoral , Peróxido de Hidrogênio , Glucose Oxidase , Antioxidantes , Neoplasias/tratamento farmacológico
4.
Anal Chem ; 95(44): 16279-16288, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37870556

RESUMO

Developing a nanotheranostic with a high sensing performance and efficient therapy was significant in cancer diagnosis and treatment. Herein, a Au nanoparticle and hairpin-loaded photosensitive metal-organic framework (PMOF@AuNP/hairpin) nanotheranostic was constructed by growing AuNPs on PMOF in situ and then attaching hairpins. On the one hand, the PMOF@AuNP/hairpin nanotheranostic could effectively transfer O2 into ROS, facilitating efficient PDT. Additionally, the nanotheranostic possessed catalase-like activity, which could effectively catalyze H2O2 to generate O2, thus achieving O2-evolving PDT and significantly enhancing the antitumor effect of PDT in vivo. On the other hand, the nanotheranostic showed a high loading efficiency of hairpins and achieved the sensitive and selective detection of miR-21 both in living cells and in vivo. Moreover, the nanotheranostic could dynamically monitor the miR-21 level. Due to the excellent imaging performance, the nanotheranostic could recognize cancer cells and might provide important information on cancer progression for PDT. The developed PMOF@AuNP/hairpin nanotheranostic provided a useful tool for tumor diagnosis and antitumor therapy.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Ouro , Peróxido de Hidrogênio , Nanomedicina Teranóstica , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral
5.
Luminescence ; 38(11): 1977-1983, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555579

RESUMO

Fluorescence nanosensors based on functional nucleic acids have been explored as a powerful sensing platform for disease-relevant miRNAs. This work developed a new hybrid nanosensor (Zr-B) through coordination-driven self-assembly of Zr ions and beacons. The prepared nanosensor exhibited high loading efficiency of beacons and could achieve sensitive and specific detection for miRNAs. The hybrid nanosensor could transfer beacons into living cells efficiently and maintain high stability and biocompatibility in the biological environment, achieving effective miRNA fluorescence imaging in living cells. Therefore, the resultant nanosensor holds potential for applications in disease diagnostics.


Assuntos
MicroRNAs , Transferência Ressonante de Energia de Fluorescência/métodos , Íons , Imagem Óptica
6.
Int J Biol Macromol ; 252: 126249, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562481

RESUMO

The existence of heavy metals and dyes seriously affects the ecological environment and human safety. Antibacterial adsorption materials with the broad-spectrum removal of multiple pollutants are urgently required for water remediation. Herein, a sustainable and antibacterial sodium alginate (SA) gel bead adsorbent with honeycomb cellular architecture is developed by the biomimetic deposition polyphenolic tannic acid (TA) induced grafting diethylenetriamine (DETA) under mild conditions for efficient removal of Cr(VI) and dyes. Taking advantage of the catechol surface chemistry, TA occurring rapid polymerization with DETA monomers not only enhances the water resistance and thermal stability of the gel bead, but also introduces abundant polyphenolic functional groups and active adsorption sites. The multifunctional gel bead showed outstanding antibacterial activity against S. aureus (sterilization rates: 83.8 %) and E. coli (sterilization rates: 99.5 %). The maximum adsorption capacity of gel bead for Cr(VI) was 163.9 mg/g. Moreover, the removal efficiency of the gel bead for dyes of Safranine T and Rhodamine B was 89.5 % (maximum adsorption capacity: 537 mg/g) and 76.7 % (maximum adsorption capacity: 460.2 mg/g), respectively, indicating its excellent broad-spectrum adsorption performance for multiple pollutants. Therefore, TA-assisted fabrication of SA-based gel bead with excellent antibacterial property is a promising multifunctional adsorption material for practical water remediation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Adsorção , Corantes/química , Alginatos/química , DEET , Escherichia coli , Staphylococcus aureus , Poluentes Químicos da Água/química , Metais Pesados/química , Íons , Água , Cinética , Concentração de Íons de Hidrogênio
7.
Anal Chem ; 95(31): 11777-11784, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506347

RESUMO

Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained increasing attention for miRNA analysis. However, current methodological challenges, including slow kinetics, low amplification efficiency, difficulties in efficient cellular internalization of DNA probes, and concerns regarding the intracellular stability of nucleic acids, need to be addressed. To this end, we propose a novel strategy for sensitive miRNA detection based on a three-dimensional (3D) CHA-HCR system. This system comprises two DNA nanospheres, named DS-13 and DS-24, which are functionalized with CHA and HCR hairpins. Target miR-21 initiates CHA between the two nanospheres, thereby activating downstream HCR and bringing cyanine 3 (Cy3) and cyanine 5 (Cy5) into proximity. The 3D CHA-HCR process leads to the formation of large DNA aggregates and the generation of fluorescence resonance energy transfer signals. In this strategy, the employment of a cascaded reaction and spatial confinement effect improve sensitivity and kinetics, while the use of DNA nanocarriers facilitates cellular delivery and protects nucleic acid probes. The experimental results in vitro, in living cells, and in clinical tissue samples demonstrated the desirable sensing performance. Collectively, this approach holds promise as a valuable tool for cancer diagnosis and biomedical research.


Assuntos
Nanosferas , Hibridização de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos , Nanosferas/química , Fatores de Tempo , DNA/química , MicroRNAs/química , Sobrevivência Celular , Humanos , Linhagem Celular Tumoral
8.
Talanta ; 265: 124805, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331042

RESUMO

Precise detection and monitoring of microRNAs (miRNAs) in living tumor cells is significant for the prompt diagnosis of cancer and provides important information for treatment of cancer. A significant challenge is developing methods for imaging different miRNAs simultaneously to further enhance diagnostic and treatment accuracy. In this work, a versatile MOF-derived theranostic system (DAPM) was constructed using photosensitive metal-organic frameworks (PMOF, PM) and a DNA AND logic gate (DA). The DAPM exhibited excellent biostability and enabled sensitive detection of miR-21 and miR-155, achieving a low limit of detection (LOD) for miR-21 (89.10 pM) and miR-155 (54.02 pM). The DAPM probe generated a fluorescence signal in tumor cells where miR-21 and miR-155 co-existed, demonstrating the enhanced ability of tumor cell recognition. Additionally, the DAPM achieved efficient ROS generation and concentration-dependent cytotoxicity under light irradiation, providing effective photodynamic therapy for anti-tumors. The proposed DAPM theranostic system enables accurate cancer diagnosis, and provides spatial and temporal information for PDT.


Assuntos
Estruturas Metalorgânicas , MicroRNAs , Neoplasias , Fotoquimioterapia , MicroRNAs/genética , Medicina de Precisão , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
9.
Talanta ; 265: 124871, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369154

RESUMO

Improving the accuracy, sensitivity and speed of intracellular miRNA imaging is essential for early diagnosis of cancer. To achieve this goal, we herein present a strategy for imaging two distinct miRNAs by DNA tetrahedron-based catalytic hairpin assembly (DCHA). Two nanoprobes, DTH-13 and DTH-24, were prepared by one-pot synthesis. The resultant structures were DNA tetrahedrons functionalized with two sets of CHA hairpins, which respectively responded to miR-21 and miR-155. Using these structured DNA nanoparticles as the carriers, the probes could easily enter living cells. The presence of miR-21 or miR-155 could trigger CHA between DTH-13 and DTH-24, leading to independent fluorescence signals of FAM and Cy3. In this system, the sensitivity and kinetics were significantly enhanced owing to the strategy of DCHA. The sensing performance of our method was thoroughly investigated in buffers, fetal bovine serum (FBS) solutions, living cells, and clinical tissue samples. The results validated the potential of DTH nanoprobes as a diagnostic tool for early stages of cancer.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , DNA/genética , DNA/química , Catálise , Diagnóstico por Imagem , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Limite de Detecção
10.
Front Chem ; 11: 1134863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874074

RESUMO

As isothermal, enzyme-free signal amplification strategies, hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) possess the advantages such as high amplification efficiency, excellent biocompatibility, mild reactions, and easy operation. Therefore, they have been widely applied in DNA-based biosensors for detecting small molecules, nucleic acids, and proteins. In this review, we summarize the recent progress of DNA-based sensors employing typical and advanced HCR and CHA strategies, including branched HCR or CHA, localized HCR or CHA, and cascaded reactions. In addition, the bottlenecks of implementing HCR and CHA in biosensing applications are discussed, such as high background signals, lower amplification efficiency than enzyme-assisted techniques, slow kinetics, poor stability, and internalization of DNA probes in cellular applications.

11.
Anal Chim Acta ; 1239: 340689, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628708

RESUMO

Developing a theranostic platform integrating precise diagnostic and efficient treatment is significant but challenging. Here, we reported a new theranostic platform - hairpin probe - photosensitizing MOFs (HPMOF) composed of photosensitizing MOFs (PMOFs) and hairpin probes labeled with fluorophore and quencher, in which PMOF played the role of photosensitizer and nanocarrier of the hairpin probe. The HPMOF was covered with a layer of ZIF-8 to achieve the dual-layered nanotheranostics (HPMOF@ZIF-8). The HPMOF@ZIF-8 achieved high DNA loading capacity and intracellular delivery for tumor-related miRNA imaging. Moreover, HPMOF@ZIF-8 could generate reactive oxygen species with high efficiency, which induced cell apoptosis, leading to efficient photodynamic therapy. Due to the different expression of miRNA between normal cells and cancer cells, the HPMOF@ZIF-8 could recognize cancer cells through imaging of miRNA, leading to more accurate treatment of cancer, providing a promising theranostic nanoplatform.


Assuntos
Estruturas Metalorgânicas , MicroRNAs , Neoplasias , Fotoquimioterapia , Humanos , MicroRNAs/genética , Medicina de Precisão , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
12.
Bioresour Technol ; 370: 128576, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603751

RESUMO

Rational design of adsorbed materials with three-dimensional (3D) hierarchical porous structure, sustainable, high adsorption capacity, and excellent selective is of great significance in practical applications. Herein, a novel aerogel adsorbed material with 3D hierarchical porous architecture was fabricated by employing naturally abundant sodium alginate (SA)/gellan gum (GG) as basic construction blocks to achieve sustainability as well as applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). The aerogel sorbent exhibited strong microstructure, numerous active adsorption sites and being ultralight. The resulting aerogel adsorbent showed high adsorption capacity (3017.23 mg/g) toward CR, exceedingly most previously reported sorbents. Furthermore, the aerogel adsorbent was accompanied by outstanding selectivity for CR in four binary dye systems. Meanwhile, after 3 cycles, the adsorption capacity decreased by 14.8 %, but still maintained the adsorption capacity of 559.79 mg/g. Therefore, excellent adsorption performance, and superb selectivity prefigures its great prospects for wastewater purification.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Vermelho Congo/química , Água , Porosidade , Alginatos/química , Poluentes Químicos da Água/química , Adsorção
13.
Luminescence ; 38(1): 83-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36494185

RESUMO

Human serum albumin (HSA) is an essential protein for maintaining human health. Accurate detection and quantification of HSA are of great significance for disease diagnosis and biochemical research. Here, a new HSA fluorescent probe BNPE based on the 1,8-naphthalimide fluorophore was designed and synthesized. The probe could recognize HSA through a twisted intramolecular charge transfer mechanism, effectively avoid the interference of most substances, and realize HSA fluorescence imaging in living cells.


Assuntos
Naftalimidas , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Naftalimidas/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química
14.
ACS Nano ; 16(12): 21129-21138, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36484532

RESUMO

Cytotoxic T cells initiate antitumor effects mainly through direct interactions with tumor cells. As a counter to this, tumor cells can put the brakes on such T-cell activity via specific linkage between programmed death ligand 1 (PDL1) and its receptor programmed cell death protein 1 (PD1). Bispecific inhibitors that enabled synchronous blockade of PD1 and PDL1, thereby releasing the brakes on T-cell antitumor activity, should significantly improve the efficacy of immune checkpoint blockade (ICB) therapy. In this work, we identified a DNA aptamer, Ap3, that could specifically recognize PDL1 on tumor cells and competed with the binding of PD1. By integrating Ap3 with an anti-PD1 aptamer, the bispecific aptamer Ap3-7c was constructed, and it showed promise for improving the T-cell immune response. We further designed a dibenzocyclooctyne (DBCO)-labeled bispecific aptamer, D-Ap3-7c, allowing covalent conjugation of aptamers onto PD1 and PDL1 after specific cell recognition. Our in vivo studies showed that this recognition-then-conjugation strategy could induce a potent immunological effect against tumors. This work is expected to provide clues for antitumor immunotherapy.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias/terapia , Antígeno B7-H1 , Imunoterapia
15.
Int J Biol Macromol ; 209(Pt B): 1922-1932, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500768

RESUMO

Water pollution by heavy metal ions is a global concern due to detrimental effects on the ecological environment and human health. To solve the problem of the stability and recyclability of the traditional adsorbents, we proposed three-dimensional lamellar porous cellulose nanofiber/polyacrylamide composite aerogel with outstanding pollutants adsorption, easy regeneration, and multiple recycling. The aerogel adsorbent was prepared by a two-step method via facile in-situ physical/chemical double cross-linking and freeze-drying processes. The resulting aerogels showed good thermal stability, superior water stability and excellent adsorption properties, with a maximum Langmuir adsorption capacity for Cu(II) ions up to 240 mg g-1 due to the in-situ physical/chemical combination of anionic polyacrylamide and carbonylated cellulose nanofibers. The adsorption mechanism was the electrostatic attraction, chelating effect and complex formation driving forces for the fast and efficient adsorption of Cu(II) ions. The removal efficiency of the aerogels for Cu(II) remained above 80% after 10 adsorption/regeneration cycles, suggesting its outstanding recyclability. The proposed aerogel adsorbent shows noteworthy potential for the practical treatment of heavy metal ion wastewater.


Assuntos
Metais Pesados , Nanofibras , Poluentes Químicos da Água , Resinas Acrílicas , Adsorção , Celulose/química , Humanos , Íons , Nanofibras/química , Poluentes Químicos da Água/análise
16.
Chemosphere ; 291(Pt 2): 132887, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34785178

RESUMO

Cellulose-based aerogels have considerable potential for various application due to renewable, low cost, and high availability. However, mechanical robustness and functionalization remain major challenges. Here, we synthesized a compressible, recoverable cellulose nanofiber (CNF)/carboxymethyl cellulose (CMC)/branched polyethyleneimine (BPEI) aerogel via electrostatic-modulated interfacial covalent crosslinking and freeze-drying process. The porous BPEI@CNF/CMC aerogel possessed excellent mechanical compression and high-density metal-chelating groups, which exhibited fast adsorption kinetics and high adsorption capacity (452.49 mg g-1) in static copper adsorption process. Furthermore, BPEI@CNF/CMC aerogels displayed excellent recyclability and could still reach 85% after 10 cycles. The integrated analyses of ATR-FTIR and XPS suggested that the predominant adsorption mechanism included electrostatic interaction, ion-exchange and chelation. This strategy provides a sustainable route to fabricate efficient biomass-based adsorbents for selective copper removal from water.


Assuntos
Nanofibras , Adsorção , Cobre , Porosidade , Água
17.
Int J Biol Macromol ; 193(Pt B): 1488-1498, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740681

RESUMO

Water contamination by heavy metal pollutants is a global concern due to detrimental effects on the environment and human health. Regenerable, high-performance heavy metal sorbents are urgently demanded for improved water purification. Herein, we present an elegant strategy of interweaving metal-organic framework (MOF-808-ethylene diamine tetraacetic acid) and TEMPO-oxidized cellulose nanofibers (TCNF) to construct freeways in hybrid aerogels for rapid and efficient transport and capture of heavy metal ions. In this strategy, a postsynthetic ligand exchange approach is applied to introduce ordered and high-density accessible binding sites for metal ions. The prepared aerogels show excellent shapeability, ultralow density less than 0.005 g cm-3, and high hierarchical porosity of 99.82%. Furthermore, benefiting from the abundant chelating groups and accessible surface areas, these aerogels exhibit outstanding uptake capacity of 300 mg g-1 and rapid adsorption kinetics of 0.031 mg g-1 h-1 for Cu(II) ions, significantly better than conventional TCNF aerogels. The aerogels could be easily regenerated at least five cycles without greatly performance loss. These aerogels could effectively remove diverse heavy metal ions from complicated contaminated water. Thus, this work provides a novel method to synthesize environmental-friendly, regenerable, and high-performance adsorption materials for water remediation.


Assuntos
Celulose/química , Cobre/química , Íons/química , Estruturas Metalorgânicas/química , Nanofibras/química , Adsorção , Poluentes Ambientais/química , Cinética , Metais Pesados/química , Porosidade , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
J Mater Chem B ; 9(39): 8341-8347, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34528052

RESUMO

Enzyme-free signal amplification approaches have attracted considerable attention in the field of intracellular miRNA analysis. However, the application of nucleic acid amplification has been limited by intracellular delivery of multiple oligonucleotide components with precise stoichiometry. In this work, we propose a new DNA tetrahedron (DTN)-based sensing platform addressing the delivery and stoichiometric control of nucleic components for enzyme-free amplification. The nanosensor is composed of two DTN probes; DTN-F served as the target recognition and signal output unit, and DTN-H served as the signal amplification unit. DTNs could facilitate the cell internalization of the nucleic acid probes and protect them from nuclease degradation. In the absence of target miRNA, the fluorescent strands (F) hybridize with the hanging sequences of DTN, and FAM and TAMRA labeled on F will be separated, blocking fluorescence resonance energy transfer (FRET). In the presence of the target miRNA, F will be displaced by the target and the hairpin structure will be restored, bringing the FRET pair into close proximity and inducing a FRET signal. Moreover, the helper strands (H) on DTN-H could liberate target miRNA through strand displacement, which will initiate a new round of reaction, generating an amplified FRET signal. The DTN nanosensor realized sensitive and selective detection of let-7a in buffer solution and 10% FBS solution. In addition, imaging of miRNA in the different cell lines and monitoring of intracellular miRNA fluctuations were carried out The developed method offers a new tool for bioanalytical and biomedical research.


Assuntos
Técnicas Biossensoriais , DNA/química , Fluorescência , MicroRNAs/química , MicroRNAs/metabolismo , Nanoestruturas/química , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas
19.
J Am Chem Soc ; 143(22): 8391-8401, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029474

RESUMO

Precise and lasting immune checkpoint blockade (ICB) therapy with high objective response rate remains a significant challenge in clinical trials. We thus report the development of an aptamer-based logic computing reaction to covalently conjugate immune checkpoint antagonizing aptamers (e.g., aPDL1 aptamer) on the surface of cancer cells, achieving effective and sustained ICB therapy without the need for antibodies. Specifically, azides were metabolically labeled on the cell-surface glycoproteins as "chemical receptors", enabling cyclooctyne-coupling aPDL1 aptamers to achieve aptamer-based logic computing-mediated azides/cyclooctynes-based bioorthogonal reaction. In stepwise fashion, PDL1 plus azide-bearing glycoproteins are expressed on cells and become multiple inputs in accordance with Boolean logic. Then, if the "AND" conditions of the algorithm are met, cyclooctyne-coupling aptamers are conjugated on the living cell surface, significantly prolonging overall mouse survival by triggering a precise and sustained T cell-mediated antitumor immunotherapy, otherwise not. Our findings indicate that DNA logic computing-mediated cyclooctyne/azide-based bioorthogonal reaction can improve the precision and robustness of ICB therapy, thereby potentially improving the objective response rate.


Assuntos
Aptâmeros de Nucleotídeos/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Algoritmos , Animais , Aptâmeros de Nucleotídeos/imunologia , Azidas/química , Azidas/farmacologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/química , Imunoterapia , Camundongos
20.
J Hazard Mater ; 415: 125612, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730646

RESUMO

Heavy metal ions can cause a series of hazards to environment and humans. Herein, we developed a wood-inspired nanocellulose aerogel adsorbent with excellent selective capability, superfast adsorption, and easy regeneration. The premise for the design is that the biomimetic honeycomb architecture and specific covalent bonding networks can provide the adsorbent with structural and mechanical integrity yet superfast removal of target contaminants. The as-obtained adsorbent showed the maximum adsorption capacity for Pb(II), Cu(II), Zn(II), Cd(II), and Mn(II) of 571 mg g-1, 462 mg g-1, 361 mg g-1, 263 mg g-1, and 208 mg g-1, respectively. The adsorbent could remove Pb(II) species with super-rapid speed (87% and 100% of its equilibrium uptake in 2 min and 10 min, respectively). Furthermore, the adsorption isotherm and kinetics models were in accord with the Langmuir and pseudo-second-order models, indicating that the adsorption behavior was dominated by monolayer chemisorption. The aerogel adsorbent had better affinity for Pb(II) than other coexisting ions in wastewater and could be regenerated for at least five cycles. Such a wood-inspired aerogel adsorbent holds great potential in the application of contaminant cleaning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA