Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Oncol ; 16(6): 2769-2780, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994173

RESUMO

BACKGROUND: Wnt/FZD-mediated signaling pathways are activated in more than 90% of hepatocellular carcinoma (HCC) cell lines. As a well-known secretory glycoprotein, Wnt3 can interact with FZD receptors on the cell surface, thereby activating the Wnt/ß-catenin signaling pathway. However, the N-glycosylation modification site of Wnt3 and the effect of this modification on the biological function of the protein are still unclear. AIM: To investigate the effect of Wnt3 N-glycosylation on the biological function of HCC cells. METHODS: Site-directed mutagenesis was used to verify the Wnt3 N-glycosylation sites, actinomycin D treatment was used to detect the stability of Wnt3 after site-directed mutation, the binding of the N-glycosylation site-directed mutant Wnt3 to FZD7 was observed by laser confocal microscopy, and the effects of the N-glycosylation site-directed mutation of Wnt3 on the Wnt/ß-catenin signaling pathway and the progression of HCC cells were detected by western blot and cell function experiments. RESULTS: Wnt3 has two N-glycosylation-modified sites (Asn90 and Asn301); when a single site at amino acid 301 is mutated, the stability of Wnt3 is weakened; the binding ability of Wnt3 to FZD7 decreases when both sites are mutated simultaneously; and the level of proteins related to the Wnt/ß-catenin signaling pathway is downregulated. Cell proliferation, migration and invasion are also weakened in the case of single 301 site and double-site mutations. CONCLUSION: These results indicate that by inhibiting the N-glycosylation of Wnt3, the proliferation, migration, invasion and colony formation abilities of liver cancer cells can be weakened, which might provide new therapeutic strategies for clinical liver cancer in the future.

2.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516841

RESUMO

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Assuntos
Flavanonas , Esfingomielina Fosfodiesterase , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Esfingomielina Fosfodiesterase/genética , Inflamação/tratamento farmacológico , Inflamação/genética , NF-kappa B , Citocinas , NADPH Oxidases/genética , Microdomínios da Membrana
3.
J Food Sci ; 85(3): 611-617, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32078748

RESUMO

Tartary buckwheat (Fagopyrum tataricum Gaertn.) albumin was hydrolyzed by alkaline protease, and three new antioxidant peptides (P1, P2, and P3) were successfully separated from the hydrolysate (TBAH). The sequences of the three antioxidant peptides were Gly-Glu-Val-Pro-Trp (GEVPW), Tyr-Met-Glu-Asn-Phe (YMENF), and Ala-Phe-Tyr-Arg-Trp (AFYRW), and their molecular weights were 586.65, 702.79, and 741.85 Da, respectively. All three peptides have a good antioxidant capacity, and P3 (AFYRW) demonstrates the best antioxidant activity of the three. The IC50 values of AFYRW for scavenging hydroxyl radicals (OH·) and (1,1-diphenyl-2-picrylhydrazyl) DPPH· free radicals were 0.65 and 0.64 mM, respectively. In addition, AFYRW exhibits the strongest lipid peroxidation inhibition ability and the highest reducing power. The results of this research indicate that the three isolated peptides can be used in the development of various antioxidant additives in the food and pharmaceutical industries.


Assuntos
Albuminas/química , Antioxidantes/química , Fagopyrum/química , Peptídeos/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Antioxidantes/isolamento & purificação , Peptídeos/isolamento & purificação
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2590-2599, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29723698

RESUMO

Puerarin has properties of anti-oxidation and anti-inflammation, which has been demonstrated protective effects in atherosclerosis and other cardiovascular diseases. However, the detail molecular mechanism still remains unclear. Here, we determined whether the atheroprotective effect of puerarin was by reducing monocyte adhesion and explored the underlying mechanism. The results showed that puerarin dose- and time-dependently reduced oxLDL-induced monocyte THP-1 adhesion to HUVECs and the expression of adhesion-related genes such as VCAM-1, ICAM-1, MCP-1 and IL-8 in HUVECs. Puerarin activated ERK5 phosphorylation and up-regulated expressions of downstream KLF2 and its targeted genes endothelial nitric oxide synthase and thrombomodulin. However, the protective effects were reversed by ERK5/KLF2 pathway inhibitor XDM8-92, BIX02189 or KLF2 siRNA suggesting the pathway involved in the function. The ex vivo assay, in which THP-1 adhesion to endothelium isolated from apoE-/- mice received various treatments further confirmed the results from HUVECs. Finally, we found that the atherosclerotic lesions in both cross sections at aortic root and whole aorta were significantly reduced in high fat-diet (HFD) mice with puerarin treatment compared with the HFD-only mice, but were increased respectively by 76% and 71% in XMD8-92 group, and 82% and 73% in BIX02189 group. Altogether, the data revealed that puerarin inhibited the monocyte adhesion in vitro and in vivo and thus reduced atherosclerotic lesions in apoE-/- mice; the protective effects were mediated by activation of ERK5/KLF2 signaling pathway. Our findings advance the understanding of puerarin function in atherosclerosis and point out a way to prevent the disease.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Isoflavonas/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Monócitos/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Proteína Quinase 7 Ativada por Mitógeno/genética , Monócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA