Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 24734-24747, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712526

RESUMO

Recently, the FeOCl-type two-dimensional materials have attracted significant attention owing to their versatile applications in fields such as thermoelectricity and photocatalysis. This study aims to systematically investigate the thermoelectric properties of ScSX (X = Cl, Br, and I) monolayers by a combination of the first-principles calculations and the machine-learning interatomic potential approach. These monolayers are indirect semiconductors with band gaps of 3.22 (ScSCl), 3.27 (ScSBr), and 2.87 eV (ScSI), respectively. The lattice thermal conductivity is decreased by 25.72% (20.90%), 44.05% (40.00%), and 30.96% (34.76%) for ScSCl, ScSBr, and ScSI along the x-axis (y-axis) when the four-phonon scattering is introduced, indicating its important role in phonon transport. Anharmonic phonon scattering yields high Grüneisen parameter and scattering rate values, hence causing these low lattice thermal conductivities. Additionally, the large Seebeck coefficients and electrical conductivities of n-type doped ScSX monolayers contribute to their excellent power factors (24.69, 25.66, and 24.99 mW/K2·m for ScSCl, ScSBr and ScSI at 300 K, respectively). Based on the excellent power factor and low thermal conductivity, the maximum values of the figure of merit are calculated to be 2.68, 3.39, and 3.21 for ScSCl, ScSBr, and ScSI monolayers at 700 K, respectively. Our research provides valuable insights into the phonon thermal transport of ScSX monolayers and suggests a promising approach to address high-order anharmonicity.

2.
Foods ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835274

RESUMO

Firmness, soluble solid content (SSC) and titratable acidity (TA) are characteristic substances for evaluating the quality of cherry tomatoes. In this paper, a hyper spectral imaging (HSI) system using visible/near-infrared (Vis-NIR) and near-infrared (NIR) was proposed to detect the key qualities of cherry tomatoes. The effects of individual spectral information and fused spectral information in the detection of different qualities were compared for firmness, SSC and TA of cherry tomatoes. Data layer fusion combined with multiple machine learning methods including principal component regression (PCR), partial least squares regression (PLSR), support vector regression (SVR) and back propagation neural network (BP) is used for model training. The results show that for firmness, SSC and TA, the determination coefficient R2 of the multi-quality prediction model established by Vis-NIR spectra is higher than that of NIR spectra. The R2 of the best model obtained by SSC and TA fusion band is greater than 0.9, and that of the best model obtained by the firmness fusion band is greater than 0.85. It is better to use the spectral bands after information fusion for nondestructive quality detection of cherry tomatoes. This study shows that hyperspectral imaging technology can be used for the nondestructive detection of multiple qualities of cherry tomatoes, and the method based on the fusion of two spectra has a better prediction effect for the rapid detection of multiple qualities of cherry tomatoes compared with a single spectrum. This study can provide certain technical support for the rapid nondestructive detection of multiple qualities in other melons and fruits.

3.
Small ; 19(27): e2300364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36987976

RESUMO

Cesium copper halide perovskite is one of the promising materials for solar-blind light detection. However, most of the cesium copper halide perovskite-based photodetectors (PDs) are focused on ultraviolet A detection and realized on the rigid substrate in the single device configuration. Here, a flexible solar-blind PDs array (10 × 10 pixels) based on the CsCu2 I3 film patterns for ultraweak light sensing and light distribution imaging is reported. Large-scale CsCu2 I3 film arrays are synthesized with various shapes and uniform dimensions through a simple vacuum-heating-assisted solution method. Benefiting from excellent air stability and superior resistance to the photodegrading of the CsCu2 I3 film, the array device exhibits long-term stable photoswitching behavior for 8 h and ultralow light detection capability to resolve the light intensity of 6.1 nW cm-2 with a high responsivity of 62 A W-1 , and the array device can acquire clear images of "G", "X", and "U" showing the input light distribution. Moreover, the flame detection and warning system based on a curved solar-blind PDs array is demonstrated, which can be used for multi-flame monitoring and locating. These results can encourage potential applications of the CsCu2 I3 film-based PDs array in the field of optical communication and environment monitoring.

4.
ACS Appl Mater Interfaces ; 14(38): 43474-43481, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098632

RESUMO

Halide perovskites featuring remarkable optoelectronic properties hold great potential for threshold switching devices (TSDs) that are of primary importance to next-generation memristors and neuromorphic computers. However, such devices are still in their infancy due to the unsolved challenges of high threshold voltage, poor stability, and lead-containing features. Herein, a unipolar TSD based on an all-inorganic halide perovskite of CsCu2I3 is demonstrated, exhibiting the fascinating attributes of a low threshold voltage of 0.54 V, a high ON/OFF ratio of 104, robust air stability over 70 days, a steep switching slope of 6.2 mV·decade-1, and lead-free composition. Moreover, the threshold voltage can be further reduced to 0.23 V using UV illumination to reduce the barrier of iodide ion migration. The multilevel threshold switching behavior can be realized through the modulation of either the compliance current or the scan rate. The TSD with mechanical compliance and transparency is also demonstrated. This work enriches TSDs with expanded perovskite materials, boosting the related applications of this emerging class of device families.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145008

RESUMO

As versatile energy harvesters, triboelectric nanogenerators (TENGs) have attracted considerable attention in developing portable and self-powered energy suppliers. The question of how to improve the output power of TENGs using cost-effective means is still under vigorous investigation. In this paper, high-output TENGs were successfully produced by using a simple and low-cost lotus-leaf-bionic (LLB) method. Well-distributed microstructures were fabricated via the LLB method on the surface of a polydimethylsiloxane (PDMS) negative triboelectric layer. 2D MXene (Ti3C2Tx) and graphene were doped into the structured PDMS to evaluate their effects on the performance of TENG. Owing to merits of the MXene doping and microstructures on the PDMS surface, the output power of MXene-doped LLB TENGs reached as high as 104.87 W/m2, which was about 10 times higher than that of graphene-doped devices. The MXene-doped LLB TENGs can be used as humidity sensors, with a sensitivity of 4.4 V per RH%. In addition, the MXene-doped LLB TENGs were also sensitive to human body motions; hence, a foot health monitoring system constructed by the MXene-doped LLB TENGs was successfully demonstrated. The results in this work introduce a way to produce cost-effective TENGs using bionic means and suggest the promising applications of TENGs in the smart monitoring system of human health.

6.
PLoS One ; 16(3): e0248592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720980

RESUMO

Image analysis is a useful technique to evaluate the efficacy of a treatment for weed control. In this study, we address two practical challenges in the image analysis. First, it is challenging to accurately quantify the efficacy of a treatment when an entire experimental unit is not affected by the treatment. Second, RGB codes, which can be used to identify weed growth in the image analysis, may not be stable due to various surrounding factors, human errors, and unknown reasons. To address the former challenge, the technique of image segmentation is considered. To address the latter challenge, the proportion of weed area is adjusted under a beta regression model. The beta regression is a useful statistical method when the outcome variable (proportion) ranges between zero and one. In this study, we attempt to accurately evaluate the efficacy of a 35% hydrogen peroxide (HP). The image segmentation was applied to separate two zones, where the HP was directly applied (gray zone) and its surroundings (nongray zone). The weed growth was monitored for five days after the treatment, and the beta regression was implemented to compare the weed growth between the gray zone and the control group and between the nongray zone and the control group. The estimated treatment effect was substantially different after the implementation of image segmentation and the adjustment of green area.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Praguicidas/farmacologia , Plantas Daninhas/crescimento & desenvolvimento , Controle de Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Humanos
7.
ACS Appl Mater Interfaces ; 11(24): 21661-21667, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136140

RESUMO

Voltage control of room-temperature ferromagnetism has remained a big challenge which will greatly influence the multifunctional memory devices. In this paper, porous TiO2 thin films were deposited by dc-reactive magnetron sputtering onto ordered porous anodic alumina (PAA) substrates. Voltage-driving room-temperature resistance and magnetization switching without external magnetic field are simultaneously found in an Ag/TiO2/PAA/Al (Ag/TP/Al) device. Further analysis indicates that the formation/rupture of oxygen vacancy defect-based conductive filaments would be responsible for the changes of resistivity and magnetization. Our present results suggest that the TP nanoporous composite film material may therefore be used to achieve voltage control of magnetism and resistance switching in the future multifunctional memory devices. The Ag/TP/Al devices can also be used for new spintronic devices, neuromorphic operations, and alternative logic circuits and computing.

8.
Chem Commun (Camb) ; 55(31): 4554-4557, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30924830

RESUMO

Low-dimensional, lead-free, and cuprous-based halide compounds of Cs3Cu2Br5 micro-rods and CsCuBr2 micro-crosses (MCs) were synthesized via a simple solution method. The CsCuBr2 MCs were quite stable in air. Distinct green electroluminescence at 527 nm originating from CsCuBr2 MCs was observed at a low driving voltage of less than 3 V.

9.
Opt Express ; 25(16): 19004-19012, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041090

RESUMO

A strategy to realize ZnO-based near-white-light electroluminescence (EL) was proposed by utilizing and regulating the intrinsic defect-related emissions of solution-processed ZnO nanocrystals (NCs). Prototype near-white light-emitting diodes (LEDs) based upon this strategy were demonstrated by using n-ZnO NCs/n-Si isotype heterojunctions. The emission color of the n-ZnO NCs/n-Si isotype heterojunction LEDs was tuned toward near white by using an Al-doped ZnO (AZO) spectral "scissor" which can tailor the green light more severely, rather than the blue or red light. Moreover, quantum size effect was clearly observed in both the photoluminescence (PL) and EL spectra via the redshift of the near-band-edge UV emission of the ZnO NCs. The strategy using AZO spectral "scissors" to regulate the VO-related green emission of ZnO may present a promising pathway to realize ZnO-based white-light LEDs.

10.
Opt Express ; 22 Suppl 3: A833-41, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922390

RESUMO

ZnO/GaN-based light-emitting diodes (LEDs) with improved asymmetric double heterostructure of Ta2O5/ZnO/HfO2 have been fabricated. Electroluminescence (EL) performance has been enhanced by the HfO2 electron blocking layer and further improved by continuing inserting the Ta2O5 hole blocking layer. The origins of the emission have been identified, which indicated that the Ta2O5/ZnO/HfO2 asymmetric structure could more effectively confine carriers in the active i-ZnO layer and meanwhile suppresses of radiation from GaN. This device exhibits superior stability in long-time running. It's hoped that the asymmetric double heterostructure may be helpful for the development of the future ZnO-based LEDs.

11.
Phys Chem Chem Phys ; 16(20): 9302-8, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24715023

RESUMO

Light-emitting diodes (LEDs) based on n-ZnO@i-MgO core-shell (CS) nanowires (NWs) are herein demonstrated and characterized. MgO insulating layers were rationally introduced as shells to modify/passivate the surface defects of ZnO NWs. A high-quality ZnO/MgO interface was attained and the optically pumped near-band-edge emission of the bare ZnO NWs was greatly enhanced after cladding i-MgO shells. Electroluminescence (EL) spectra measured in the whole UV-visible range revealed that light emission can only be detected when LEDs were applied with reverse bias. Moreover, the emission color can be tuned from orange to bright white with increasing reverse bias. We explored these interesting results tentatively in terms of the energy-band diagram of the heterojunction and it was found that the interfacial i-MgO shells not only acted as an insulator to prevent a short circuit between the two electrodes, but also offered a potential energy difference so that electron tunneling was energetically possible, both of which were essential to generate the reverse-bias EL. The dipole-forbidden d-d transitions by the Laporte selection rule in the p-NiO might be the reason to why there is no light being detected from the CS NW LED under forward bias. It is hoped that this simple and facile route may provide an effective approach in designing low-cost CS NW LEDs.

12.
Nanotechnology ; 24(31): 315203, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23857977

RESUMO

In this paper, layered ZnO nanowall networks were directly grown on Al substrates using a hydrothermal method without predepositing seed layers. The individual ZnO nanowalls with a thickness of several nanometers and a size of several hundred nanometers were (002) surface dominated, in which the preferential growth direction of ZnO was suppressed. White electroluminescence devices were fabricated based on Au/polymethylmethacrylate/ZnO-nanowall (metal-insulator-semiconductor) structures. The chromaticity coordinate of the electroluminescence spectrum for the optimal device was calculated as (0.27, 0.34), which is close to (0.33, 0.33) of standard white light.

13.
ACS Appl Mater Interfaces ; 4(5): 2521-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22551404

RESUMO

High-quality Mn:ZnO (MZO) film had been prepared on N-GaN coated sapphire substrates followed by postdeposition thermal annealing treatment at 700 °C. For the annealed MZO/GaN heterojunction, a 15 nm cubic structural ZnGa(2)O(4) layer was observed at the MZO/GaN interface through transmission electron microscope analysis. Through electroluminescence (EL) measurement, the formation of the nanointerface results in an EL transition from ultraviolet- to red-dominant mode for n-Mn:ZnO/N-GaN heterojunction light-emitting diodes (LEDs). The heterojunction LED showed a rectification ratio of ∼2.0 × 10(5) at ±2 V, a dark current of 3.5 nA at -2 V and a quite strong red EL with a low turn-on voltage of 3 V. On the basis of the energy band diagram, we think the EL transition from ultraviolet- to red-dominant mode is mainly due to the formation of a thin oxide blocking nanolayer at the MZO/GaN interface during the annealing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA