Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133763, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359757

RESUMO

Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Reprodutibilidade dos Testes , Prata/química , Medicina Tradicional Chinesa
2.
Inorg Chem ; 62(45): 18375-18383, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910633

RESUMO

A series of novel Cp*Ir complexes with nitrogen-rich N̂N bidentate ligands were developed for the catalytic dehydrogenation of formic acid in water under base-free conditions. These complexes were synthesized by using pyridyl 1,2,4-triazole, methylated species, or pyridyl 1,2,3-triazole as a N-site regulation ligand and were fully characterized. Complex 1-H2O bearing 1,2,4-triazole achieved a high turnover frequency of 14192 h-1 at 90 °C in 4 M FA aqueous solution. The terminal and bridged Ir-H intermediates of 1-H2O were successfully detected by 1H NMR and mass spectrometry measurements. Kinetic isotope effect experiments and density functional theory (DFT) calculations were performed; then a plausible mechanism was proposed involving the ß-hydride elimination and formation of H2. Water-assisted H2 release was proven to be the rate-determining step of the reaction. The distribution of Mulliken charges on N atoms of triazole ligand internally revealed that the ortho site N2 of 1-H2O with a higher electron density was conducive to efficient proton transfer. Additionally, the advantage of water-assisted short-range bridge of 1,2,4-triazole moieties led to a higher catalytic activity of 1-H2O. This study demonstrated the effectiveness of nitrogen-rich ligands on FA dehydrogenation and revealed a good strategy for N site regulation in the development of new homogeneous catalysts.

3.
Inorg Chem ; 62(28): 11225-11232, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37401905

RESUMO

The regulation of ancillary ligands is critical to improve catalysis of Cp*Ir complexes for CO2 hydrogenation. Herein, a series of Cp*Ir complexes with N^N or N^O ancillary ligands were designed and synthesized. These N^N and N^O donors were derived from the pyridylpyrrole ligand. The solid-state structures of Cp*Ir complexes featured a pendant pyridyl group in 1-Cl and 1-SO4 and a pyridyloxy group in 2-Cl, 3-Cl, 2-SO4, and 3-SO4. These complexes were employed as catalysts for CO2 hydrogenation to formate in the presence of alkali under a pressure range of 0.1-8 MPa and temperature range of 25-120 °C. The catalytic activity of 2-SO4 with a pyridyloxy pendant group dramatically outperformed that of 1-SO4 and 3-SO4. The TOF of conversion of CO2 into formate reached 263 h-1 at 25 °C under a total pressure of 8 MPa (CO2/H2 = 1:1). The experiments and density functional theory calculations revealed that a pendant base in metal complexes plays a key role in the rate-determining heterolytic H2 splitting and enhancing the proton transfer by forming a hydrogen bonding bridge thereby improving the catalytic activity.

4.
Medicine (Baltimore) ; 101(33): e30111, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984135

RESUMO

BACKGROUND: To analyze the epidemiological characteristics and changing trends of lumbar fractures in Xingtai Orthopedic Hospital in the past 10 years, and to improve the prevention and treatment of lumbar fractures. METHODS: Using the hospital information system, data on patients with lumbar fractures in our hospital from 2009 to 2018 were collected regarding their age, gender, fracture time, injury mechanism, and the type of fracture. The epidemiological characteristics and trends of lumbar fractures for the period were summarized and analyzed. RESULTS: The age of male patients with a high incidence of lumbar fractures was 61 to 70 years, followed by 51 to 60 years. The age of female patients with the highest incidence rate was 61 to 70 years, followed by 51 to 60 years (19.22%). Lumbar fractures in group A were predominantly of men. The majority of lumbar fractures in group B were of women. In group A, the incidence rate was higher in young men (21-50 years) than in women and higher in women >51 years. Most of the affected individuals were women. In group B, there were more middle-aged and young men (21-50 years) than women; however, there were more women than men aged ≥51 years. Car accident injury was the main cause of fractures, but in group B women, low-energy injuries were the main cause of fractures. The periods of high incidence in groups A and B were 4 to 6 years and 7 to 9 years, respectively. The number of injuries in group A was the highest and burst fracture was the main fracture type. In group B, the number of fall injuries was the highest, followed by car accident injuries, and compression fracture was the main fracture type. CONCLUSION: The number of lumbar fractures in women caused by low-energy injuries showed an increasing trend. The type of compression fracture increased, which might be related to osteoporosis caused by the decrease in the estrogen level after menopause.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Estudos Epidemiológicos , Feminino , Hospitais , Humanos , Pacientes Internados , Vértebras Lombares/lesões , Masculino , Pessoa de Meia-Idade , Fraturas da Coluna Vertebral/epidemiologia
5.
Inorg Chem ; 60(21): 16584-16592, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637291

RESUMO

Interconversion between CO2 + H2 and FA/formate is the most promising strategy for the fixation of carbon dioxide and reversible hydrogen storage; however, FA dehydrogenation and CO2 hydrogenation are usually studied separately using different catalysts for each reaction. This report describes of the catalysis of [Cp*Ir(N∧N)(X)]n+ (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; X = Cl, n = 0; X = H2O, n = 1) bearing a proton-responsive N∧N pyridylpyrrole ligand for both reactions. Complex 2-H2O catalyzes FA dehydrogenation at 90 °C with a TOFmax of 45 900 h-1. Its catalysis is more active in aqueous solution than in neat solution under base-free conditions. These complexes also catalyze CO2 hydrogenation in the presence of base to formate under atmospheric pressure (CO2/H2 = 0.05 MPa/0.05 MPa) at 25 °C with a TOF value of 4.5 h-1 in aqueous solution and with a TOF value of 29 h-1 in a methanol/H2O mixture solvent. The possible mechanism is proposed by intermediate characterization and KIE experiments. The extraordinary activity of these complexes are mainly attributed to the metal-ligand cooperative effect of the the pyrrole group to accept a proton in the dehydrogenation of formic acid and assist cooperative heterolytic H-H bond cleavage in CO2 hydrogenation.

6.
Inorg Chem ; 60(9): 6266-6275, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33870688

RESUMO

To explore structure-activity relationships with respect to light-harvesting behavior, a family of neutral iridium complexes [Ir(ppy)2(LR)] 1-4 (where ppy = 2-phenylpyridine, and N̂N = 2-(1H-pyrrol-2-yl)pyridine and its functionalized derivatives) were designed and synthesized. The structural modifications in metal complexes are accomplished through the attributions of electron-donating CH3 in 2, OCH3 in 3, and electron-withdrawing CF3 in 4. The structural analysis displays that the pyridylpyrrole acts as one-negative charged bidentated ligand to chelate the iridium center. The electrochemical and photophysical properties of these complexes were systematically studied. The neutral 1-4 as well as the ionic structurally analogous [Ir(ppy)2(bpy)](PF6) (5) were utilized as PSs in photocatalytic hydrogen generation from water with [Co(bpy)3](PF6)2 as catalyst and triethanolamine (TEOA) as electron sacrificial agent in the presence of salt LiCl. Complex 1 maintains activity for more than 144 h under irradiation, and the total turnover number is up to 1768. The electrochemical properties and the quenching reaction indicate the H2 generation by neutral complexes 1-4 is involved exclusively in the oxidative quenching process.

7.
Chemistry ; 27(40): 10313-10322, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769600

RESUMO

Seven three dimensional (3D) uranyl organic frameworks (UOFs), formulated as [NH4 ][(UO2 )3 (HTTDS)(H2 O)] (1), [(UO2 )4 (HTTDS)2 ](HIM)6 (2, IM=imidazole), [(UO2 )4 (TTDS)(H2 O)2 (Phen)2 ] (3, Phen=1,10-phenanthroline), [Zn(H2 O)4 ]0.5 [(UO2 )3 (HTTDS)(H2 O)4 ] (4), and {(UO2 )2 [Zn(H2 O)3 ]2 (TTDS)} (5), {Zn(UO2 )2 (H2 O)(Dib)0.5 (HDib)(HTTDS)} (6, Dib=1,4-di(1H-imidazol-1-yl)benzene) and [Na]{(UO2 )4 [Cu3 (u3 -OH)(H2 O)7 ](TTDS)2 } (7) have been hydrothermally prepared using a rigid octadentate carboxylate ligand, tetrakis(3,5-dicarboxyphenyl)silicon(H8 TTDS). These UOFs have different 3D self-assembled structures as a function of co-ligands, structure-directing agents and transition metals. The structure of 1 has an infinite ribbon formed by the UO7 pentagonal bipyramid bridged by carboxylate groups. With further introduction of auxiliary N-donor ligands, different structure of 2 and 3 are formed, in 2 the imidazole serves as space filler, while in 3 the Phen are bound to [UO2 ]2+ units as co-ligands. The second metal centers were introduced in the syntheses of 4-7, and in all cases, they are part of the final structures, either as a counterion (4) or as a component of framework (5-7). Interesting, in 7, a rare polyoxometalate [Cu3 (µ3 -OH)O7 (O2 CR)4 ] cluster was found in the structure. It acts as an inorganic building unit together with the dimer [(UO2 )2 (O2 CR)4 ] unit. Those uranyl carboxylates were sufficiently determined by single crystal X-ray diffraction, and their topological structures and luminescence properties were analyzed in detail.

8.
RSC Adv ; 11(44): 27420-27430, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35480652

RESUMO

The demand for high energy density materials (HEDMs) remains a major challenge. Density functional theory (DFT) methods were employed to design a new family of bridged 1,2,4-triazole N-oxides by the manipulation of the linkage and oxygen-containing groups. The optimized geometry, electronic properties, energetic properties and sensitivities of new 40 molecules in this study were extensively evaluated. These designed compounds exhibit high densities (1.87-1.98 g cm-3), condensed-phase heat of formation values (457.31-986.40 kJ mol-1), impressive values for detonation velocity (9.28-9.49 km s-1) and detonation pressure (21.22-41.31 GPa). Their sensitivities (impact, electrostatic, and shock) were calculated and compared with 1,3,5-triamino-2,4,6-trinitrobenzene (TABT) and 4,6-dinitrobenzofuroxan (DNBF). Some new compounds 4,4'-trinitro-5,5'-bridged-bis-1,2,4-triazole-2,2'-diol (TN1-TN8) and 4,4'-dinitro-5,5'-ammonia-bis-1,2,4-triazole-2,2'-diol (DN3) were distinguished from this system, making them promising candidates for HEDMs. In addition, we found that the gas-relative parameters (detonation heat, oxygen balance, φ) were as important as the density, which were highly correlated to the detonation properties (P, D). Their comprehensive correlations should also be considered in the design of new energetic molecules.

9.
Dalton Trans ; 49(35): 12365-12371, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845253

RESUMO

New dipyridylpyrrole N-oxide ligands HL1 and HL2 are designed and synthesized via oxidation of 2-(5-(pyridin-2-yl)-1H-pyrrol-2-yl)pyridine (Hdpp) by using 3-chloroperbenzoic acid (m-CPBA) in CH2Cl2. The treatment of ZnEt2 with two equiv. of HL1 and HL2 affords [Zn(L1)2] and [Zn(L2)2] in medium yield, respectively. These ligands and zinc complexes are fully characterized by NMR, IR, UV-vis and ESI-MS spectroscopy and X-ray diffraction analysis. The structure of HL1 and HL2 shows a planar geometry. The intramolecular hydrogen-bond interactions between the imino hydrogen and N-oxide oxygen atom are observed. In [Zn(L1)2] and [Zn(L2)2], two ligands chelate to the zinc metal with a cross perpendicular geometry. The zinc complexes were employed as a highly efficient catalyst for the thiol-Michael addition of thiols to α,ß-unsaturated ketones in EtOH at room temperature. The loading of the catalyst is lowered to 0.01 mol%. The catalytic mechanism was proposed based on NMR and ESI-MS experiments.

10.
Sci Rep ; 8(1): 12587, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135479

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama, is one of the most damaging pests of citrus-producing regions throughout the world. The use of insecticides is the main strategy for controlling psyllid and has increased year by year. In this study, four field populations of D. citri were evaluated for resistance to nine different insecticides using the leaf-dip method. The results showed that the highest level of resistance for D. citri was found in imidacloprid with a resistance ratio of 15.12 in the Zengcheng population compared with the laboratory susceptible population. This was followed by chlorpyriphos (6.47), dinotefuran (6.16), thiamethoxam (6.04), lambda-cyhalothrin (4.78), and bifenthrin (4.16). Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) showed significant synergism on imidacloprid effects in the Zengcheng population (3.84- and 2.46-fold, respectively). Nevertheless, diethyl maleate (DEM) had no synergism on imidacloprid. Biochemical enzyme assays suggested that general esterase, glutathione S-transferase and cytochrome P450 monooxygenase activities were higher in the field-collected populations than in the laboratory susceptible population. However, glutathione S-transferase may play a minor role in the resistance of adult D. citri to insecticides. At the molecular level, resistance of D. citri to imidacloprid is mainly related to the increased expression of CYP4C68 and CYP4G70 (>5-fold).


Assuntos
Hemípteros/metabolismo , Resistência a Inseticidas/fisiologia , Animais , China , Clorpirifos , Citrus/metabolismo , Guanidinas , Hemípteros/genética , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Neonicotinoides , Nitrilas , Nitrocompostos , Piretrinas , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA