Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 8(3): 527-535, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637201

RESUMO

Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-ß-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.

2.
Biotechnol J ; 16(6): e2000413, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33595188

RESUMO

BACKGROUND: Methylorubrum extorquens AM1 can be engineered to convert methanol to value-added chemicals. Most of these chemicals derive from acetyl-CoA involved in the serine cycle. However, recent studies on methylotrophic metabolism have suggested that C3 pyruvate is a good potential precursor for broadening the types of synthesized products. METHODS AND RESULTS: In the present study, we found that isobutanol was a model chemical that could be generated from pyruvate through a 2-keto acid pathway. Initially, the engineered M. extorquens AM1 could only produce a trace amount of isobutanol at 0.62 mgL-1 after introducing the heterologous 2-ketoisovalerate decarboxylase and alcohol dehydrogenase. Furthermore, the metabolomic analysis revealed that insufficient carbon fluxes through 2-ketoisovalerate and pyruvate were the key limitation steps for efficient biosynthesis of isobutanol. Based on this analysis, the titer of isobutanol was improved by over 20-fold after overexpressing alsS gene encoding acetolactate synthase and deleting ldhA gene for lactate dehydrogenase. Moreover, substituting the cell chassis with the isobutanol-tolerant strain isolated from adaptive evolution of M. extorquens AM1 further increased the production of isobutanol by 1.7-fold, resulting in the final titer of 19 mgL-1 in flask cultivation. CONCLUSION: Our current findings provided promising insights into engineering methylotrophic cell factories capable of converting methanol to isobutanol or value-added chemicals using pyruvate as the precursor.


Assuntos
Metanol , Methylobacterium extorquens , Butanóis , Metabolômica , Methylobacterium extorquens/genética
3.
Metab Eng ; 64: 95-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493644

RESUMO

Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.


Assuntos
Metanol , Methylobacterium extorquens , Acetilcoenzima A , Methylobacterium extorquens/genética , Pentoses
4.
Appl Microbiol Biotechnol ; 104(10): 4515-4532, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215707

RESUMO

The methylotrophic bacterium Methylorubrum extorquens AM1 holds a great potential of a microbial cell factory in producing high value chemicals with methanol as the sole carbon and energy source. However, many gene functions remain unknown, hampering further rewiring of metabolic networks. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been demonstrated to be a robust tool for gene knockdown in diverse organisms. In this study, we developed an efficient CRISPRi system through optimizing the promoter strength of Streptococcus pyogenes-derived deactivated cas9 (dcas9). When the dcas9 and sgRNA were respectively controlled by medium PR/tetO and strong PmxaF-g promoters, dynamic repression efficacy of cell growth through disturbing a central metabolism gene glyA was achieved from 41.9 to 96.6% dependent on the sgRNA targeting sites. Furthermore, the optimized CRISPRi system was shown to effectively decrease the abundance of exogenous fluorescent protein gene mCherry over 50% and to reduce the expression of phytoene desaturase gene crtI by 97.7%. We then used CRISPRi technology combined with 26 sgRNAs pool to rapidly discover a new phytoene desaturase gene META1_3670 from 2470 recombinant mutants. The gene function was further verified through gene deletion and complementation as well as phylogenetic tree analysis. In addition, we applied CRISPRi to repress the transcriptional level of squalene-hopene cyclase gene shc involved in hopanoid biosynthesis by 64.9%, which resulted in enhancing 1.9-fold higher of carotenoid production without defective cell growth. Thus, the CRISPRi system developed here provides a useful tool in mining functional gene of M. extorquens as well as in biotechnology for producing high-valued chemicals from methanol. KEY POINTS: Developing an efficient CRISPRi to knockdown gene expression in C1-utilizing bacteria CRISPRi combined with sgRNAs pool to rapidly discover a new phytoene desaturase gene Improvement of carotenoid production by repressing a competitive pathway.


Assuntos
Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Methylobacterium extorquens/enzimologia , Methylobacterium extorquens/genética , Oxirredutases/genética , Proteína 9 Associada à CRISPR/genética , Técnicas de Silenciamento de Genes , Redes e Vias Metabólicas , Oxirredutases/metabolismo , Filogenia , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
5.
Curr Issues Mol Biol ; 33: 225-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166195

RESUMO

Methanol, commercially generated from methane, is a renewable chemical feedstock that is highly soluble, relatively inexpensive, and easy to handle. The concept of native methylotrophic bacteria serving as whole cell catalysts for production of chemicals and materials using methanol as a feedstock is highly attractive. In recent years, the available omics data for methylotrophic bacteria, especially for Methylobacterium extorquens, the most well-characterized model methylotroph, have provided a solid platform for rational engineering of methylotrophic bacteria for industrial production. In addition, there is a strong interest in converting the more traditional heterotrophic production platforms toward the use of single carbon substrates, including methanol, through metabolic engineering. In this chapter, we review the recent progress toward achieving the desired growth and production yields from methanol, by genetically engineered native methylotrophic strains and by the engineered synthetic methylotrophs.


Assuntos
Produtos Biológicos/metabolismo , Biotransformação/fisiologia , Engenharia Metabólica/métodos , Metanol/metabolismo , Methylobacterium extorquens , Organismos Geneticamente Modificados , Redes e Vias Metabólicas/genética , Metano/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Biologia Sintética/métodos
6.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053589

RESUMO

Candida albicans and Cryptococcus neoformans, human-pathogenic fungi found worldwide, are receiving increasing attention due to high morbidity and mortality in immunocompromised patients. In the present work, 110 fungus pairs were constructed by coculturing 16 wood-decaying basidiomycetes, among which coculture of Trametes robiniophila Murr and Pleurotus ostreatus was found to strongly inhibit pathogenic fungi through bioactivity-guided assays. A combination of metabolomics and molecular network analysis revealed that 44 features were either newly synthesized or produced at high levels in this coculture system and that 6 of the features that belonged to a family of novel and unusual linear sesterterpenes contributed to high activity with MICs of 1 to 32 µg/ml against pathogenic fungi. Furthermore, dynamic 13C-labeling analysis revealed an association between induced features and the corresponding fungi. Unusual sesterterpenes were 13C labeled only in P. ostreatus in a time course after stimulation by the coculture, suggesting that these sesterterpenes were synthesized by P. ostreatus instead of T. robiniophila Murr. Sesterterpene compounds 1 to 3 were renamed postrediene A to C. Real-time reverse transcription-quantitative PCR (RT-qPCR) analysis revealed that transcriptional levels of three genes encoding terpene synthase, farnesyl-diphosphate farnesyltransferase, and oxidase were found to be 8.2-fold, 88.7-fold, and 21.6-fold higher, respectively, in the coculture than in the monoculture, indicating that biosynthetic gene cluster 10 was most likely responsible for the synthesis of these sesterterpenes. A putative biosynthetic pathway of postrediene A to postrediene C was then proposed based on structures of sesterterpenes and molecular network analysis.IMPORTANCE A number of gene clusters involved in biosynthesis of secondary metabolites are presumably silent or expressed at low levels under conditions of standard laboratory cultivation, resulting in a large gap between the pool of discovered metabolites and genome capability. This work mimicked naturally occurring competition by construction of an artificial coculture of basidiomycete fungi for the identification of secondary metabolites with novel scaffolds and excellent bioactivity. Unusual linear sesterterpenes of postrediene A to C synthesized by P. ostreatus not only were promising lead drugs against human-pathogenic fungi but also highlighted a distinct pathway for sesterterpene biosynthesis in basidiomycetes. The current work provides an important basis for uncovering novel gene functions involved in sesterterpene synthesis and for gaining insights into the mechanism of silent gene activation in fungal defense.


Assuntos
Antifúngicos/farmacologia , Pleurotus/metabolismo , Sesterterpenos/metabolismo , Trametes/metabolismo , Candida albicans/efeitos dos fármacos , Técnicas de Cocultura , Cryptococcus neoformans/efeitos dos fármacos , Sesterterpenos/farmacologia
7.
Microb Cell Fact ; 17(1): 194, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572892

RESUMO

BACKGROUND: Butadiene is a platform chemical used as an industrial feedstock for the manufacture of automobile tires, synthetic resins, latex and engineering plastics. Currently, butadiene is predominantly synthesized as a byproduct of ethylene production from non-renewable petroleum resources. Although the idea of biological synthesis of butadiene from sugars has been discussed in the literature, success for that goal has so far not been reported. As a model system for methanol assimilation, Methylobacterium extorquens AM1 can produce several unique metabolic intermediates for the production of value-added chemicals, including crotonyl-CoA as a potential precursor for butadiene synthesis. RESULTS: In this work, we focused on constructing a metabolic pathway to convert crotonyl-CoA into crotyl diphosphate, a direct precursor of butadiene. The engineered pathway consists of three identified enzymes, a hydroxyethylthiazole kinase (THK) from Escherichia coli, an isopentenyl phosphate kinase (IPK) from Methanothermobacter thermautotrophicus and an aldehyde/alcohol dehydrogenase (ADHE2) from Clostridium acetobutylicum. The Km and kcat of THK, IPK and ADHE2 were determined as 8.35 mM and 1.24 s-1, 1.28 mM and 153.14 s-1, and 2.34 mM and 1.15 s-1 towards crotonol, crotyl monophosphate and crotonyl-CoA, respectively. Then, the activity of one of rate-limiting enzymes, THK, was optimized by random mutagenesis coupled with a developed high-throughput screening colorimetric assay. The resulting variant (THKM82V) isolated from over 3000 colonies showed 8.6-fold higher activity than wild-type, which helped increase the titer of crotyl diphosphate to 0.76 mM, corresponding to a 7.6% conversion from crotonol in the one-pot in vitro reaction. Overexpression of native ADHE2, IPK with THKM82V under a strong promoter mxaF in M. extorquens AM1 did not produce crotyl diphosphate from crotonyl-CoA, but the engineered strain did generate 0.60 µg/mL of intracellular crotyl diphosphate from exogenously supplied crotonol at mid-exponential phase. CONCLUSIONS: These results represent the first step in producing a butadiene precursor in recombinant M. extorquens AM1. It not only demonstrates the feasibility of converting crotonol to key intermediates for butadiene biosynthesis, it also suggests future directions for improving catalytic efficiency of aldehyde/alcohol dehydrogenase to produce butadiene precursor from methanol.


Assuntos
Butadienos/síntese química , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Methylobacterium extorquens/patogenicidade , Redes e Vias Metabólicas
8.
Int J Syst Evol Microbiol ; 67(4): 920-924, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27911255

RESUMO

A Gram-stain-negative, aerobic, yellow-pigmented, non-flagellated, non-gliding, oxidase- and catalase-positive bacterium, designated CY01T, was isolated from seawater of the Yellow Sea. CY01T grew at 15-37 °C (optimum, 30 °C), pH 5-8 (optimum, 6.5-7.5) and with 0.5-12 % (w/v) NaCl (optimum, 0.5-3.5 %). It could not produce flexirubin-type pigment or reduce nitrate to nitrite. CY01T showed the highest 16S rRNA gene sequence similarity to the type strain of Euzebyella saccharophila (97.0 %) and clustered tightly with the species of the genus Euzebyella in the phylogenetic trees based on the 16S rRNA gene sequences. The major cellular fatty acids of CY01T were iso-C15 : 0, iso-C15 : 1G and iso-C17 : 0 3-OH and the major respiratory quinone was menaquinone MK-6. Polar lipids included phosphatidylethanolamine (PE), four unidentified lipids and one unidentified aminolipid. The genomic DNA G+C content was 38.2 mol%. Based on the results of the polyphasic characterization of CY01T, it represents a novel species of the genus Euzebyella, for which the name Euzebyella marina sp. nov. is proposed. The type strain is CY01T (=CCTCC AB 2014348T=KCTC 42440T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA