Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 636: 122851, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931535

RESUMO

The postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated. Because surgery damages the vascular endothelium on the BBB around the surgical margin, the platelet membrane coating endows PM-HDOX with its inherent capacity to cross the broken BBB and target the surgical margin. Moreover, preoperative administration combined with fast-targeted PM-HDOX can realize the potential of bypassing thrombus. In GBM resection models, PM-HDOX with preoperative administration demonstrated significantly enhanced BBB-crossing and surgical margin-targeted efficacy. In particular, the PM-HDOX intensities around the surgical margins of the preoperative administration group were more than twice that of the postoperative administration group due to bypassing the thrombus formed in the broken BBB. In the antitumor experiment, the preoperative administration of PM-HDOX significantly inhibited the growth of postoperative residual tumors and prolonged the median survival time of mice. In conclusion, preoperative administration of a biomimetic platelet nanodrug can be an efficient and promising drug delivery strategy for residual GBM after surgery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Trombose , Camundongos , Animais , Margens de Excisão , Plaquetas/patologia , Biomimética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Glioblastoma/patologia , Trombose/tratamento farmacológico , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
2.
Cell Death Dis ; 13(6): 536, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676251

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low ß8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFß1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.


Assuntos
Glioblastoma , Glioma , Cadeias beta de Integrinas , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Glioblastoma/patologia , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/metabolismo
3.
Stem Cells Int ; 2022: 6430565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463812

RESUMO

Mesenchymal stem cells (MSCs) have emerged as putative therapeutic tools due to their intrinsic tumor tropism, and anti-tumor and immunoregulatory properties. The limited passage and self-differentiation abilities of MSCs in vitro hinder preclinical studies on them. In this study, we focused on the safety of immortalized mesenchymal stem cells (im-MSCs) and, for the first time, studied the feasibility of im-MSCs as candidates for the treatment of glioma. The im-MSCs were constructed by lentiviral transfection of genes. The proliferative capacity of im-MSCs and the proliferative phenotype of MSCs and MSCs co-cultured with glioma cells (U87) were measured using CCK-8 or EdU assays. After long-term culture, karyotyping of im-MSCs was conducted. The tumorigenicity of engineered MSCs was evaluated using soft agar cloning assays. Next, the engineered cells were injected into the brain of female BALB/c nude mice. Finally, the cell membranes of im-MSCs were labeled with DiO or DiR to detect their ability to be taken up by glioma cells and target in situ gliomas using the IVIS system. Engineered cells retained the immunophenotype of MSC; im-MSCs maintained the ability to differentiate into mesenchymal lineages in vitro; and im-MSCs showed stronger proliferative capacity than unengineered MSCs but without colony formation in soft agar, no tumorigenicity in the brain, and normal chromosomes. MSCs or im-MSCs co-cultured with U87 cells showed enhanced proliferation ability, but did not show malignant characteristics in vitro. Immortalized cells continued to express homing molecules. The cell membranes of im-MSCs were taken up by glioma cells and targeted in situ gliomas in vivo, suggesting that im-MSCs and their plasma membranes can be used as natural drug carriers for targeting gliomas, and providing a safe, adequate, quality-controlled, and continuous source for the treatment of gliomas based on whole-cell or cell membrane carriers.

4.
Front Cell Dev Biol ; 9: 663207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540823

RESUMO

High-grade glioma is highly invasive and malignant, resistant to combined therapies, and easy to relapse. A better understanding of circular RNA (circRNA) biological function in high-grade glioma might contribute to the therapeutic efficacy. Here, a circRNA merely upregulated in high-grade glioma, circGLIS3 (hsa_circ_0002874, originating from exon 2 of GLIS3), was validated by microarray and Real-time quantitative reverse transcription PCR (qRT-PCR). The role of circGLIS3 in glioma was assessed by functional experiments both in vitro and in vivo. Fluorescence in situ hybridization (FISH), RNA pull-down, RNA immunoprecipitation (RIP), and immunohistochemical staining were performed for mechanistic study. Cocultured brain endothelial cells with glioma explored the role of exosome-derived circGLIS3 in the glioma microenvironment. We found that upregulation of circGLIS3 promoted glioma cell migration and invasion and showed aggressive characteristics in tumor-bearing mice. Mechanistically, we found that circGLIS3 could promote the Ezrin T567 phosphorylation level. Moreover, circGLIS3 could be excreted by glioma through exosomes and induced endothelial cell angiogenesis. Our findings indicate that circGLIS3 is upregulated in high-grade glioma and contributes to the invasion and angiogenesis of glioma via modulating Ezrin T567 phosphorylation.

5.
World Neurosurg ; 152: e436-e448, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062295

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most lethal primary tumor in the central nervous system. Ferroptosis is a type of programmed iron-dependent cell death. In the present study, we aimed to identify prognostic ferroptosis-related genes and their role in tumor immunity. METHODS: We used differential and survival analysis and The Cancer Genome Atlas (TCGA) GBM RNA sequencing data. We also used systematic bioinformatic methods. RESULTS: Using differential and survival analysis, we found that a ferroptosis suppressor was predominant within ferroptosis-related genes in TCGA GBM RNA sequencing data. By integrating TCGA and gene expression omnibus GBM cohorts, 12 dysregulated ferroptosis suppressors were detected. Among the suppressors, CD44, heat shock protein family B (small) member 1 (HSPB1), and solute carrier family 40 member 1 (SLC40A1) were relevant to overall survival. Using systematic bioinformatic methods, we observed that ferroptosis suppressor expression correlated with immunosuppression, which could be attributed to T-cell exhaustion and cytotoxic T-lymphocyte evasion. Finally, we observed that a potential ferroptosis-inducing drug, acetaminophen, interacted with CD44, HSPB1, and SLC40A1. CONCLUSIONS: The ferroptosis suppressors CD44, HSPB1, and SLC40A1 were significantly associated with prognosis in GBM and correlated with immunosuppression (i.e., T-cell exhaustion and cytotoxic T-lymphocyte evasion). Acetaminophen might have an antitumor function in GBM by regulating CD44, HSPB1, and SLC40A1 to induce ferroptosis. Our results are expected to be of great significance in developing new immunotherapy strategies for GBM.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Ferroptose/genética , Glioblastoma/genética , Glioblastoma/imunologia , Terapia de Imunossupressão , Acetaminofen/farmacologia , Proteínas de Transporte de Cátions/genética , Biologia Computacional , Ferroptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Receptores de Hialuronatos/genética , Estimativa de Kaplan-Meier , Chaperonas Moleculares/genética , Prognóstico , Análise de Sobrevida , Linfócitos T Citotóxicos/imunologia
6.
Neurosurg Rev ; 44(4): 1943-1955, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33037945

RESUMO

To compare the efficacy and safety of treatments based on the Stupp protocol for adult patients with newly diagnosed glioblastoma and to determine the optimal treatment option for patients with different O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation statuses. We estimated hazard ratios (HRs) for overall survival (OS) and odds ratios (ORs) for adverse events of grade 3 or higher (AEs ≥ 3). Twenty-one randomized controlled trials involving 6478 patients treated with 21 different treatment strategies were included. Results of the pooled HRs indicated tumor-treating fields (TTF) combined with the Stupp protocol resulted in the most favorable OS for patients with and without MGMT promoter methylation. Subgroup analyses by the two MGMT promoter statuses indicated that lomustine-temozolomide plus radiotherapy or TTF combination therapy was associated with the best OS for patients with methylated MGMT promoter (HR, 1.03; 95% credible interval [CI], 0.54-1.97), and standard cilengitide combination therapy or TTF combination treatment was associated with the best OS for patients with unmethylated MGMT promoter (HR, 1.05; 95% CI, 0.67-1.64). Regarding AEs ≥ 3, there were no significant differences in pooled ORs. However, Bayesian ranking profiles that demonstrated intensive cilengitide combination therapy and TTF combination therapy have a similar possibility to cause the least toxicity. These results indicated that TTF combination therapy was associated with increased survival, irrespective of the MGMT promoter methylation status, and a relatively tolerated safety profile compared with other combination treatments. The optimal treatment option for glioblastoma patients with different MGMT promoter methylation statuses was different.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Antineoplásicos Alquilantes/uso terapêutico , Teorema de Bayes , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Metanálise em Rede , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA