Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(37): 43321-43331, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668507

RESUMO

The emergence of antimicrobial resistance is an alarming global health concern and has stimulated the development of novel functional nanomaterials to combat multi-drug-resistant (MDR) bacteria. In this work, we demonstrate for the first time the synthesis and application of surfactin-coated silver nanoparticles as an efficient antibacterial and antibiofilm agent against the drug-resistant bacteria Pseudomonas aeruginosa for safe dermal applications. Our in vivo studies showed no significant superficial dermal irritation, edema, and erythema, while microscopic analysis revealed that surfactin-coated silver nanoparticles caused no pathological alterations at the applied concentrations. These results support the potential use of surfactin-coated silver nanoparticles against drug-resistant bacterial biofilm infections and in skin wound dressing applications.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes
2.
ACS Omega ; 8(7): 7119-7127, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844567

RESUMO

Plant products are widely used for health and disease management. However, besides their therapeutic effects, some plants also have potential toxic activity. Calotropis procera is a well-known laticifer plant having pharmacologically active proteins playing a therapeutically significant role in curing diseases like inflammatory disorders, respiratory diseases, infectious diseases, and cancers. The present study was aimed to investigate the antiviral activity and toxicity profile of the soluble laticifer proteins (SLPs) obtained from C. procera. Different doses of rubber free latex (RFL) and soluble laticifer protein (ranging from 0.019 to 10 mg/mL) were tested. RFL and SLPs were found to be active in a dose-dependent manner against NDV (Newcastle disease virus) in chicken embryos. Embryotoxicity, cytotoxicity, genotoxicity, and mutagenicity of RFL and SLP were examined on chicken embryos, BHK-21 cell lines, human lymphocytes, and Salmonella typhimurium, respectively. It was revealed that RFL and SLP possess embryotoxic, cytotoxic, genotoxic, and mutagenic activity at higher doses (i.e., 1.25-10 mg/mL), while low doses were found to be safe. It was also observed that SLP showed a rather safer profile as compared to RFL. This might be due to the filtration of some small molecular weight compounds at the time of purification of SLPs through a dialyzing membrane. We suggest that SLPs could be used therapeutically against viral disorders but the dose should be critically monitored.

3.
Food Chem Toxicol ; 165: 113139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598805

RESUMO

Emamectin benzoate (EMB) is generally considered a safe insecticide in agriculture and veterinary practices, yet, it can cause cytotoxic and genotoxic effects. Hence, the aim of this study was to evaluate toxic effects of 80% EMB and its commercially used formulations (Tycon 1.9% EC and Tycon plus 5% EW) in Pakistan and tested for acute toxicity in albino rats, rabbits and fish (Labeo rohita). Genotoxicity was investigated by in vivo comet assay and bone marrow micronucleues test in the rats. In vitro mutagenicity was tested in Salmonella typhimurium TA98 and TA100. The tested EMB formulations were found moderately toxic (oral LD50: 122-168 mg/kg), causing severe eye irritation in rabbits, highly toxic to fish (LC50: 9-43 µg/L) and found non mutagenic. Oral administrations of EMB (80% and 5%) at 100 mg/kg of body weight to male rats reduced red blood cells, hemoglobin, and slightly increased the blood glucose, urea and liver enzymes levels but had no significant damage to DNA. EMB induced bone marrow toxicity was observed as reduction of polychromatic erythrocytes. Overall, EMB exposure was highly toxic to fish, and caused hemo- and hepatotoxicity in rats. These findings warrant cautious use of EMB formulations in agrochemicals and veterinary medicine.


Assuntos
Inseticidas , Ivermectina , Animais , Dano ao DNA , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Masculino , Testes de Mutagenicidade , Paquistão , Coelhos , Ratos
4.
Arh Hig Rada Toksikol ; 72(4): 315-325, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34985838

RESUMO

The aim of this study was to evaluate the genotoxic effects of Al2O3, Fe2O3, and Cu nanoparticles with chromosomal aberration (CA), micronucleus (MN), and comet assays on the bone marrow of male BALB/c mice. Three doses of Al2O3, Fe2O3 (75, 150, and 300 mg/kg), or Cu (5, 10, and 15 mg/kg) nanoparticles were administered to mice through intraperitoneal injection once a day for 14 days and compared with negative control (distilled water) and positive control (mitomycin C and methyl methanesulphonate). Al2O3 and Fe2O3 did not show genotoxic effects, but Cu nanoparticles induced significant (P<0.05) genotoxicity at the highest concentration compared to negative control. Our findings add to the health risk information of Al2O3, Fe2O3, and Cu nanoparticles regarding human exposure (occupational and/or through consumer products or medical treatment), and may provide regulatory reference for safe use of these nanoparticles. However, before they can be used safely and released into the environment further chronic in vivo studies are essential.


Assuntos
Cobre , Nanopartículas Metálicas , Óxido de Alumínio , Animais , Células da Medula Óssea , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Cobre/toxicidade , Dano ao DNA , Compostos Férricos , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Testes para Micronúcleos
5.
Food Chem Toxicol ; 130: 267-275, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132391

RESUMO

Biosafety is a multidisciplinary approach that encompasses social, societal, ethical issues and policies for the regulations of genetically modified (GM) organisms. The potential health risks associated with GM sugarcane containing AVP1 gene confers resistance against drought and salinity were evaluated by animal feeding studies and some genotoxicity assays. Acute and sub-chronic toxicity examinations were carried out via oral dose administration of GM sugarcane juice supplemented with the normal diet (modified from certified rodent standard diet) on Wistar rats. AVP1 protein concentration in sugarcane juice was 1mg/1 mL. Biochemical, haematological blood analyses were performed and the results revealed that there were non-significant differences among all the treatment groups; GM sugarcane juice, non-GM sugarcane juice and the control group (normal diet and water). Genotoxicity assessment based on the comet assay and the micronucleus assay data exhibited that AVP1 GM sugarcane was not genotoxic or cytotoxic in rat's peripheral blood. These research findings supported the conclusion that GM AVP1 sugarcane was non-toxic in experimental animals. Therefore, data generated through this research work would be helpful for the commercial release of GM AVP1 sugarcane.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Saccharum/genética , Animais , Proteínas de Arabidopsis/toxicidade , Peso Corporal , Ensaio Cometa , Feminino , Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/toxicidade , Masculino , Valor Nutritivo , Plantas Geneticamente Modificadas , Ratos , Ratos Wistar , Testes de Toxicidade
6.
BMC Vet Res ; 13(1): 34, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122564

RESUMO

BACKGROUND: The devastating viral disease of small ruminants namely Peste des petits ruminants (PPR) declared as target for "Global Eradication" in 2015 by the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE). For a successful eradication campaign, molecular diagnostic tools are preferred for their specificity, efficacy and robustness to compliment prophylactic measures and surveillance methods. However, molecular tools have a few limitations including, costly equipment, multi-step template preparation protocols, target amplification and analysis that restrict their use to the sophisticated laboratory settings. As reverse transcription-loop mediated isothermal amplification assay (RT-LAMP) has such an intrinsic potential for point of care diagnosis, this study focused on the genetic detection of causative PPR virus (PPRV) in field conditions. It involves the use of a sample buffer that can precipitate out virus envelope and capsid proteins through ammonium sulphate precipitation and exposes viral RNA, present in the clinical sample, to the LAMP reaction mixture. RESULTS: The test was evaluated using 11 PPRV cultures, and a total of 46 nasal swabs (n = 32 collected in the field outbreaks, n = 14 collected from experimentally inoculated animals). The RT-LAMP was compared with the reverse transcription-PCR (RT-PCR) and real-time quantitative RT-PCR (RT-qPCR) for its relative specificity, sensitivity and robustness. RT-LAMP detected PPRV in all PPRV cultures in or less than 30 min. Its detection limit was of 0.0001TCID50 (tissue culture infective dose-50) per ml with 10-fold higher sensitivity than that of RT-PCR. In 59.4% of the field samples, RT-LAMP detected PPRV within 35-55 min. The analytical sensitivity and specificity of the RT-LAMP were equivalent to that of the RT-qPCR. The time of detection of PPRV decreased by at least forty minutes or 3-4 h in case of in the RT-LAMP as compared with the RT-qPCR and the RT-PCR, respectively. CONCLUSIONS: The sensitive and specific RT-LAMP test developed in this study targeting a small fragment of the N gene of PPRV is a rapid, reliable and applicable molecular diagnostic test of choice under the field conditions. RT-LAMP requiring minimal training offers a very useful tool for PPR diagnosis especially during the "Global PPR Eradication Campaign".


Assuntos
Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/diagnóstico , Vírus da Peste dos Pequenos Ruminantes/genética , Doenças dos Ovinos/virologia , Proteínas Virais/metabolismo , Animais , Colorimetria , Surtos de Doenças/veterinária , Fluorometria , Regulação Viral da Expressão Gênica , Genoma Viral , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Cabras , Índia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Proteínas Virais/genética , Cultura de Vírus
7.
Drug Chem Toxicol ; 38(2): 152-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24896217

RESUMO

Metallic nanoparticles (NPs) have a variety of applications in different industries including pharmaceutical industry where these NPs are used mainly for image analysis and drug delivery. The increasing interest in nanotechnology is largely associated with undefined risks to the human health and to the environment. Therefore, in the present study cytotoxic and genotoxic effects of iron oxide, aluminium oxide and copper nanoparticles were evaluated using most commonly used assays i.e. Ames assay, in vitro cytotoxicity assay, micronucleus assay and comet assay. Cytotoxicity to bacterial cells was assessed in terms of colony forming units by using Escherichia coli (gram negative) and Bacillus subtilis (gram positive). Ames assay was carried out using two bacterial strains of Salmonella typhimurium TA98 and TA100. Genotoxicity of these NPs was evaluated following exposure to monkey kidney cell line, CHS-20. No cytotoxic and genotoxic effects were observed for iron oxide, and aluminium oxide NPs. Copper NPs were found mutagenic in TA98 and in TA100 and also found cytotoxic in dose dependent manner. Copper NPs induced significant (p < 0.01) increase in number of binucleated cells with micronuclei (96.6 ± 5.40) at the highest concentration (25 µg/mL). Copper NPs also induced DNA strand breaks at 10 µg/mL and oxidative DNA damage at 5 and 10 µg/mL. We consider these findings very useful in evaluating the genotoxic potential of NPs especially because of their increasing applications in human health and environment with limited knowledge of their toxicity and genotoxicity.


Assuntos
Óxido de Alumínio/toxicidade , Cobre/toxicidade , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Óxido de Alumínio/administração & dosagem , Animais , Bactérias/citologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Contagem de Colônia Microbiana , Ensaio Cometa , Cobre/administração & dosagem , Quebras de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Férricos/administração & dosagem , Haplorrinos , Rim/citologia , Rim/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Testes para Micronúcleos , Testes de Mutagenicidade
8.
Drug Chem Toxicol ; 37(4): 466-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24524247

RESUMO

Chlorpyrifos is a widely used insecticide of organophosphate group, which causes severe toxicological effects in non target aquatic organisms especially in fish. In the present study the genotoxic effects of sublethal concentrations of chlorpyrifos were observed in the erythrocytes and gill cells of Labeo rohita (commonly known as rohu) using the Alkaline Single-Cell Gel Electrophoresis (Comet) assay. Effects of chlorpyrifos on the behavior of the fish were also investigated. The 96 h LC50 value of chlorpyrifos, estimated by Trimmed Spearman-Karber (TSK) in static bioassay, was found to be 442.8 µg/L. On the basis of LC50 value, the fish were exposed to three sublethal concentrations of chlorpyrifos (SL-I ∼221.4 µg/L, SL- II ∼110.7 µg/L and SL-III ∼73.8 µg/L) for 96 h. Blood and gill samples were collected at every 24 h and were subjected to the Comet assay. The observed DNA damage was concentration dependent and time dependent and those levels of DNA damage in between the tested concentrations and times were significantly different (p < 0.01). It was also found that the gill cells are more sensitive to chlorpyrifos, though; it revealed more DNA damage as compared to the erythrocytes of fish. Fish exposed to different concentrations of chlorpyrifos showed different neurotoxic behavioral responses. It was concluded that chlorpyrifos is a genotoxic and neurotoxic insecticide causing DNA damage and neurotoxic effects in Labeo rohita.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Clorpirifos/administração & dosagem , Ensaio Cometa , Cyprinidae , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Brânquias/citologia , Brânquias/efeitos dos fármacos , Inseticidas/administração & dosagem , Dose Letal Mediana , Mutagênicos/administração & dosagem , Síndromes Neurotóxicas/etiologia , Fatores de Tempo , Poluentes Químicos da Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA