Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34147534

RESUMO

Stress-related disorders are extremely harmful and cause significant impacts on the individual and society. Despite the limited evidence regarding glucagon-like peptide-1 receptor (GLP-1R) and mental disorders, a few clinical and preclinical studies suggest that modulating this system could improve symptoms of stress-related disorders. This study aimed to investigate the effects of liraglutide, a GLP-1R agonist, on neurobehavioral phenotypes and brain oxidative status in adult zebrafish. Acute liraglutide promoted anxiolytic-like effects in the light/dark test, while chronic treatment blocked the impact of unpredictable chronic stress on behavioral and physiological parameters. Taken together, our study demonstrates that liraglutide is active on the zebrafish brain and may counteract some of the effects induced by stress. More studies are warranted to further elucidate the potential of GLP-1R agonists for the management of brain disorders.


Assuntos
Encéfalo/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Estresse Psicológico/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Humanos , Masculino , Estresse Oxidativo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33310063

RESUMO

The search for new therapies, derived from natural compounds in order to prevent and treat Parkinson's disease (PD) has aroused the interest of many researchers. Spondias mombin (L) has active constituents with known antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the neuroprotective potential of the hexane extract of S. mombin (EHSm) in an experimental model of DP induced by rotenone in zebrafish. The analysis of GC/MS demonstrated cyclogallipharaol (13.88%) and dl-α-tocopherol (8.08%) mostly, while HPLC-DAD indicated the presence of quercetin (<5), quercetrin (6.54 mg/g) and rutin (8.83 mg/g). The zebrafish exposed for 4 weeks to rotenone (ROT, 3 µg/L) and EHSm (5, 15, 25 mg/L). EHSm (25 mg/L) was able to reverse the behavioral damage induced by ROT in the entries and time spent in the top area of the tank. The parameters biochemicals indicated of EHSm prevented oxidative stress (TBARS e total thiols), inflammation and dopamine uptake triggered by ROT, evidenced of increased on the CAT, SOD and GSH and decreased of GST, O2- production and NADPH oxidase activities. We conclude that EHSm demonstrate a neuroprotector effect mediated through anxiolytic and antioxidant activities. However, more studies are necessary to elucidate the exact mechanism underlying the effects of EHSm on DP induced by rotenone in zebrafish.


Assuntos
Anacardiaceae/química , Comportamento Animal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Modelos Animais de Doenças , Peroxidação de Lipídeos , Extratos Vegetais/química , Rotenona/toxicidade , Peixe-Zebra
3.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 591-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768573

RESUMO

Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.


Assuntos
Acetilcisteína/análogos & derivados , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
4.
Ecotoxicology ; 29(2): 140-147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865514

RESUMO

Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.


Assuntos
Pirazóis/toxicidade , Peixe-Zebra/fisiologia , Animais , Antioxidantes , Comportamento Animal/fisiologia , Fungicidas Industriais , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 26(27): 27808-27815, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342352

RESUMO

The use of pesticides has been growing along with the demand for agricultural products. These compounds, however, are not restricted to the field, spreading easily through the soil, contaminating groundwater and reaching urban centers. Propiconazole is a triazole fungicide that has been increasingly used in agriculture. However, there are few data about its effects on non-target organisms. This study aimed to evaluate the effects of propiconazole in zebrafish. The animals were exposed for 96 h to different concentrations of propiconazole (425, 850, 1700, 8500 ng/L), then submitted to the novel tank test for behavioral analyses. The brains were collected for evaluation of oxidative stress parameters. Exposure to propiconazole (1700 and 8500 ng/L) decreased the number of crossings, entries, and time spent in the top, and increased the time spent in the bottom area of the tank. We also observed an increase in the activities of superoxide dismutase and catalase in zebrafish brain exposed to propiconazole at 425, 850, and 1700 ng/L. We conclude that propiconazole alters normal fish behavior and disrupts oxidative status. More studies are necessary to elucidate the exact mechanism underlying the effects of propiconazole on non-target-organisms.


Assuntos
Catalase/química , Fungicidas Industriais/análise , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/química , Triazóis/análise , Agricultura , Animais , Fungicidas Industriais/química , Água Subterrânea , Praguicidas/análise , Praguicidas/química , Solo , Triazóis/química , Peixe-Zebra
6.
Artigo em Inglês | MEDLINE | ID: mdl-30946939

RESUMO

Alcohol abuse is a highly prevalent condition that substantially contributes to global morbidity and mortality. Most available pharmacological treatments offer little efficacy as relapse rates are high, due in part to the symptoms experienced during abstinence. The roles of oxidative stress and glutamatergic transmission in alcohol withdrawal have been demonstrated in several studies, suggesting that restoration of oxidative status and glutamatergic function may represent a new pharmacological target to prevent the behavioral and biochemical alterations observed during withdrawal. A well-known antioxidant and glutamatergic modulator, N-acetylcysteine (NAC), has shown promise in treating a variety of psychiatric conditions, including substance use disorders, and is a promising molecule in the management of alcohol withdrawal syndrome. Thus, the aim of this study was to investigate whether NAC is able to prevent the expression of behavioral and biochemical alterations induced by ethanol withdrawal in chronically exposed zebrafish. Animals were exposed to ethanol (1% v/v, 20 min) or control water, followed by treatment with NAC (1 mg/L, 10 min) or control water daily for 8 days; 24 h later, experimental animals were submitted to the novel tank test (NTT). Ethanol withdrawal decreased the distance traveled and increased the number of immobile episodes, indicating locomotor deficits; moreover, withdrawal decreased the number of entries and time spent in the top area, while increasing time spent in the bottom area, indicating anxiety-like behavior. Alcohol withdrawal also increased lipid peroxidation (TBARS) and decreased non-protein reduced sulfhydryl (NPSH) and superoxide dismutase (SOD) and catalase (CAT) activities. NAC attenuated these locomotor deficits and prevented the manifestation of anxiety-like behavior as well as the oxidative damage observed following ethanol withdrawal. Given its favorable safety profile, additional clinical and preclinical studies are warranted to unravel the long-term effects of NAC in the context of alcohol abuse and the exact mechanisms involved. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in substance abuse disorders.


Assuntos
Acetilcisteína/uso terapêutico , Etanol/efeitos adversos , Síndrome de Abstinência a Substâncias/prevenção & controle , Animais , Ansiedade/induzido quimicamente , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Peixe-Zebra
7.
Neuropharmacology ; 150: 145-152, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30917915

RESUMO

Stress-related psychiatric disorders are mental conditions that affect mood, cognition and behavior and arise because of the impact of prolonged stress on the central nervous system (CNS). Acetyl-L-carnitine (ALC) is an acetyl ester of L-carnitine that easily crosses the blood-brain barrier and was recently found to be decreased in patients with major depressive disorder. ALC plays a role in energy metabolism and is widely consumed as a nutritional supplement to improve physical performance. In this study, our objective was to evaluate the effects of ALC treatment (0.1 mg/L, 10 min) for 7 days on behavior and oxidative stress in zebrafish subjected to unpredictable chronic stress (UCS) protocol. Behavioral outcomes were assessed in the novel tank test, and parameters of oxidative status (lipid peroxidation and antioxidant defenses) were evaluated in the brain using colorimetric methods. According to our previous findings, UCS increased anxiety-like behavior and lipid peroxidation, while it decreased non-protein thiol levels and superoxide dismutase activity. However, ALC reversed the anxiety-like behavior and oxidative damage in stressed animals, while it was devoid of effect in control animals. Although our data reinforce the neuroprotective potential of ALC in the treatment of psychiatric disorders related to stress, further investigations are required to clarify its mechanisms of action and confirm its efficacy.


Assuntos
Acetilcarnitina/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Acetilcarnitina/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Peixe-Zebra
8.
Mol Neurobiol ; 56(2): 1188-1195, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29876880

RESUMO

There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Ansiedade/metabolismo , Encéfalo/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra
9.
PeerJ ; 6: e5309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083453

RESUMO

Studies have suggested that oxidative stress may contribute to the pathogenesis of mental disorders. In this context, molecules with antioxidant activity may be promising agents in the treatment of these deleterious conditions. Acetyl-L-carnitine (ALC) is a multi-target molecule that modulates the uptake of acetyl-CoA into the mitochondria during fatty acid oxidation, acetylcholine production, protein, and membrane phospholipid synthesis, capable of promoting neurogenesis in case of neuronal death. Moreover, neurochemical effects of ALC include modulation of brain energy and synaptic transmission of multiple neurotransmitters, including expression of type 2 metabotropic glutamate (mGlu2) receptors. The aim of this study was to investigate the effects of ALC in zebrafish by examining behavioral and biochemical parameters relevant to anxiety and mood disorders in zebrafish. ALC presented anxiolytic effects in both novel tank and light/dark tests and prevented the anxiety-like behavior induced by an acute stressor (net chasing). Furthermore, ALC was able to prevent the lipid peroxidation induced by acute stress in the zebrafish brain. The data presented here warrant further investigation of ALC as a potential agent in the treatment of neuropsychiatric disorders. Its good tolerability also subsidizes the additional studies necessary to assess its therapeutic potential in clinical settings.

10.
PeerJ ; 6: e5136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002970

RESUMO

BACKGROUND: The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. METHODS: Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. RESULTS: Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. DISCUSSION: Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.

11.
J Exp Biol ; 221(Pt 4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361609

RESUMO

Several studies have shown that manipulations to the housing environment modulate susceptibility to stress in laboratory animals, mainly in rodents. Environmental enrichment (EE) is one such manipulation that promotes neuroprotection and neurogenesis, besides affecting behaviors such as drug self-administration. Zebrafish are a popular and useful animal model for behavioral neuroscience studies; however, studies evaluating the impact of housing conditions in this species are scarce. In this study, we verified the effects of EE on behavioral (novel tank test) and biochemical [cortisol and reactive oxygen species (ROS)] parameters in zebrafish submitted to unpredictable chronic stress (UCS). Consistent with our previous findings, UCS increased anxiety-like behavior, cortisol and ROS levels in zebrafish. EE for 21 or 28 days attenuated the effects induced by UCS on behavior and cortisol, and prevented the effects on ROS levels. Our findings reinforce the idea that EE exerts neuromodulatory effects across species, reducing vulnerability to stress and its biochemical impact. Also, these results indicate that zebrafish is a suitable model animal to study the behavioral effects and neurobiological mechanisms related to EE.


Assuntos
Bem-Estar do Animal , Meio Ambiente , Estresse Fisiológico , Peixe-Zebra/fisiologia , Animais , Feminino , Abrigo para Animais , Hidrocortisona/metabolismo , Masculino , Modelos Animais , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
12.
Neurochem Res ; 43(2): 458-464, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29196951

RESUMO

Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the increase in alcohol metabolites and imbalance in oxidative status. N-acetylcysteine (NAC) is a mucolytic agent and an antidote for paracetamol overdose. Preclinical and clinical studies have shown that NAC is a multi-target drug acting through neuroprotective, antioxidant and neurotrophic mechanisms as well as a glutamate modulator. The aim of this study was to investigate the effects of NAC in zebrafish acutely exposed to ethanol (EtOH). Animals pretreated or not with NAC (1 mg/L, 10 min) were exposed for 60 min to standard tank water (EtOH-) or to 1% EtOH (EtOH+) to evaluate anxiety-like behavior and locomotion in the novel tank test and oxidative damage in the brain. Zebrafish (Danio rerio) exposed to EtOH displayed a decrease in the distance traveled, crossings, entries and time spent in the top area in the novel tank test. Exposure to EtOH also caused oxidative damage, shown by increased lipid peroxidation, decreased non-protein thiols and increased production of reactive oxygen species (DCF assay). NAC prevented both the behavioral alterations and the oxidative stress observed in EtOH+ animals. Given the effects of NAC in preventing the acute behavioral and biochemical effects of EtOH, additional studies are warranted to further investigate the basis of its anecdotal use to prevent hangover.


Assuntos
Acetilcisteína/farmacologia , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Feminino , Masculino , Peixe-Zebra
13.
Physiol Behav ; 171: 50-54, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039073

RESUMO

Chronic stress may cause physical, behavioral and neuropsychiatric changes, affecting the health condition of an individual. Aggression is a universal behavior with great relevance on human and animal social systems. Despite studies showing the influence of chronic stress on aggression, the effects of unpredictable chronic stress (UCS) on aggressive behavior in male and female zebrafish remain unknown. Thus, the aim of this study was to evaluate the effects of UCS on the aggressive behavior and cortisol levels in adult zebrafish of both sexes. Our results showed that UCS increased aggression in males, but not in females, which displayed more aggressive behavior at baseline than control males. Increased whole-body cortisol levels were observed in stressed males; however, no differences were found between female groups. In conclusion, we reported for the first time gender differences on behavioral parameters and cortisol levels in response to UCS in zebrafish. These results highlight the relevance of studying behavioral and physiological parameters in both sexes separately.


Assuntos
Agressão/fisiologia , Hidrocortisona/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Locomoção/fisiologia , Masculino , Peixe-Zebra
14.
Psychopharmacology (Berl) ; 233(21-22): 3815-3824, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562666

RESUMO

RATIONALE: Several model organisms have been employed to study the impacts of stress on biological systems. Different models of unpredictable chronic stress (UCS) have been established in rodents; however, these protocols are expensive, long-lasting, and require a large physical structure. Our group has recently reported an UCS protocol in zebrafish with several advantages compared to rodent models. We observed that UCS induced behavioral, biochemical, and molecular changes similar to those observed in depressed patients, supporting the translational relevance of the protocol. OBJECTIVES: Considering that a pharmacological assessment is lacking in this zebrafish model, our aim was to evaluate the effects of anxiolytic (bromazepam) and antidepressant drugs (fluoxetine and nortriptyline) on behavioral (novel tank test), biochemical (whole-body cortisol), and molecular parameters (cox-2, tnf-α, il-6, and il-10 gene expression) in zebrafish subjected to UCS. RESULTS: We replicated previous data showing that UCS induces behavioral and neuroendocrine alterations in zebrafish, and we show for the first time that anxiolytic and antidepressant drugs are able to prevent such effects. Furthermore, we extended the molecular characterization of the model, revealing that UCS increases expression of the pro-inflammatory markers cox-2 and il-6, which was also prevented by the drugs tested. CONCLUSIONS: This study reinforces the use of zebrafish as a model organism to study the behavioral and physiological effects of stress. The UCS protocol may also serve as a screening tool for evaluating new drugs that can be used to treat psychiatric disorders with stress-related etiologies.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Bromazepam/farmacologia , Fluoxetina/farmacologia , Nortriptilina/farmacologia , Estresse Psicológico/metabolismo , Animais , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Hidrocortisona/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
15.
Rev. bras. farmacogn ; 26(2): 233-239, Jan.-Apr. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-779015

RESUMO

ABSTRACT Cynara scolymus L., Asteraceae, are traditionally used to treat dyspepsia. This study evaluated the hypolipidemic and antiatherogenic effects of an aqueous extract prepared from the leaves of C. scolymus in rat's model. Hypercholesterolemic rats (1% cholesterol and 0.5% cholic acid for 15 days) were treated (0.5 ml/200 g) with extract of C. scolymus (150, 300, or 600 mg/kg p.o.; n = 6) or simvastatin (4 mg/kg p.o.; n = 6) once per day for 30 days along with hypercaloric diet. A control group (C) was given water (0.5 ml/200 g; n = 6). A high-cholesterol diet was maintained throughout the treatment period. Rats treated with extract of C. scolymus (150, 300, or 600 mg/kg) and simvastatin showed significant decreases in serum levels of total cholesterol (−46.9%, −51.9%, −44%, and −41.9%, respectively) and low-density lipoprotein-cholesterol (LDL-C; −52.1%, −54.8%, −51.9%, and −46.7%, respectively), compared with group C (p < 0.005). Biochemical analyses revealed significant decrease in the concentration of IL-1, IL-6, TNF-α, IFN-γ, C-reactive protein, oxidized-LDL, and antioxidized-LDL in rats treated with extract of C. scolymus (150, 300, or 600 mg/kg). There were no differences in serum ALT enzyme activity between the groups. Our results suggest that hypolipidemic and antiatherogenic effects could be related with the presence of polar substances present in aqueous extract of C. scolymus.

16.
Pharm Biol ; 54(1): 151-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25885936

RESUMO

CONTEXT: The traditional uses of Alpinia zerumbet (Pers.) B.L.Burtt & R.m.SM (Zingiberaceae), popularly known as colonia or pacová, suggest that the species has antihypertensive, diuretic, and sedative properties. We previously reported that an ethanol extract of Alpinia zerumbet (HEA) significantly reduced the immobility time in the tail suspension test (TST), similar to the tricyclic antidepressant imipramine. Moreover, HEA presented antioxidant and anxiolytic-like effects in mice. OBJECTIVE: The objective of this study is to investigate the involvement of monoaminergic and glutamatergic systems in the antidepressant-like effects of this species. MATERIALS AND METHODS: A hydroethanolic extract prepared with the leaves of A. zerumbet was assayed in the TST in male Swiss mice (800 mg/kg, p.o.). Synthesis inhibitors (AMPT, inhibitor of tyrosine hydroxylase, 100 mg/kg, i.p.; and PCPA, irreversible tryptophan hydroxylase inhibitor, 100 mg/kg, i.p.) and a specific glutamate antagonist (AMPA receptor antagonist NBQX, 10 mg/kg, i.p.) were used prior testing. RESULTS: Pre-treatment with the noradrenergic/dopaminergic inhibitor AMPT fully abolished the anti-immobility effects of HEA, with the two-way ANOVA yielding a significant interaction between pre-treatment and treatment (F1,32 = 10.0, p < 0.01); no interaction was observed with the serotonergic inhibitor PCPA (F1,32 = 0.33, p > 0.05) or NBQX (F1,32 = 0.21, p > 0.05). CONCLUSION: These results indicated that HEA most likely acts through the dopaminergic and/or noradrenergic system but not through the serotoninergic or glutamatergic systems. This study reinforces the idea that the available biodiversity in Brazil can serve as a basis for innovation in the development of new drugs.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Alpinia/química , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neurônios Adrenérgicos/metabolismo , Animais , Antidepressivos/química , Antidepressivos/isolamento & purificação , Neurônios Dopaminérgicos/metabolismo , Etanol/química , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Medicinais , Solventes/química
17.
Behav Brain Res ; 296: 301-310, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26403161

RESUMO

Drug residue contamination in aquatic ecosystems has been studied extensively, but the behavioral effects exerted by the presence of these drugs are not well known. Here, we investigated the effects of acute stress on anxiety, memory, social interaction, and aggressiveness in zebrafish exposed to fluoxetine and diazepam at concentrations that disrupt the hypothalamic-pituitary-interrenal (HPI) axis. Stress increased the locomotor activity and time spent in the bottom area of the tank (novel tank). Fluoxetine and diazepam prevented these behaviors. We also observed that stress and fluoxetine and diazepam exposures decreased social interaction. Stress also increased aggressive behavior, which was not reversed by fluoxetine or diazepam. These data suggest that the presence of these drugs in aquatic ecosystems causes significant behavioral alterations in fish.


Assuntos
Agressão , Comportamento Animal , Diazepam/farmacologia , Fluoxetina/farmacologia , Moduladores GABAérgicos/farmacologia , Atividade Motora , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Diazepam/administração & dosagem , Modelos Animais de Doenças , Feminino , Fluoxetina/administração & dosagem , Moduladores GABAérgicos/administração & dosagem , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Peixe-Zebra
18.
Ecotoxicol Environ Saf ; 122: 440-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386335

RESUMO

Copper is a heavy metal found at relatively high concentrations in surface waters around the world. Copper is a micronutrient at low concentrations and is essential to several organisms. At higher concentrations copper can become toxic, which reveal the importance of studying the toxic effects of this metal on the aquatic life. Thus, the objective of this study was to evaluate the toxic effects of copper on the behavior and biochemical parameters of zebrafish (Danio rerio). Zebrafish were exposed for 24h at a concentration of 0.006 mg/L Cu. After the exposure period, behavioral profile of animals was recorded through 6 min using two different apparatuses tests: the Novel Tank and the Light-Dark test. After behavioral testing, animals were euthanized with a solution of 250 mg/L of tricaine (MS-222). Brain, muscle, liver and gills were extracted for analysis of parameters related to oxidative stress and accumulation of copper in these tissues. Acetylcholinesterase (AChE) activity was determined in brain and muscle. Results showed acute exposure to copper induces significant changes in behavioral profile of zebrafish by changing locomotion and natural tendency to avoid brightly lit area. On the other hand, there were no significant effects on parameters related to oxidative stress. AChE activity decreased significantly in zebrafish muscle, but there were no significant changes in cerebral AChE activity. Copper levels in tissues did not increase significantly compared to the controls. Taken together, these results indicate that a low concentration of copper can acutely affect behavioral profile of adult zebrafish which could be partially related to an inhibition on muscle AChE activity. These results reinforce the need of additional tests to establishment of safe copper concentrations to aquatic organisms and the importance of behavioral parameters in ecotoxicological studies.


Assuntos
Acetilcolinesterase/metabolismo , Comportamento Animal/efeitos dos fármacos , Cobre/toxicidade , Músculos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Feminino , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Atividade Motora/efeitos dos fármacos , Músculos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento
19.
Pharmacol Biochem Behav ; 139 Pt B: 121-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26261019

RESUMO

Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders.


Assuntos
Acetilcisteína/farmacologia , Ansiolíticos/farmacologia , Ansiedade/prevenção & controle , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Estresse Fisiológico , Pesquisa Translacional Biomédica
20.
Artigo em Inglês | MEDLINE | ID: mdl-26229543

RESUMO

The jaboticaba tree, Plinia trunciflora (O. Berg) Kausel, is popularly named "jabuticabeira" in Brazil and is used in folk medicine to treat diabetes and chronic inflammation of the tonsils, but studies evaluating the central effects of this species are limited. This study evaluated the antidepressant-like and antioxidant effects of P. trunciflora (PT) aqueous extract, in which five different anthocyanins were identified. PT showed significant ferric-reduction power and DPPH radical scavenging activity in vitro and reduced lipid peroxidation both in vitro and ex vivo. At the behavioural level, PT (400 and 800 mg/kg, i.p.) dose-dependently reduced immobility time in the tail suspension test in Swiss male mice. The identification of bioactive compounds accompanied by the in vitro and ex vivo antioxidant activity of PT suggests that these activities might be related to the antidepressant-like activity of P. trunciflora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA