Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8000): 765-771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383627

RESUMO

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

2.
ACS Nano ; 14(11): 15417-15427, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33171041

RESUMO

Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10-5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.


Assuntos
Óptica e Fotônica , Refratometria , Lasers , Luz
3.
Materials (Basel) ; 11(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601484

RESUMO

A novel optical label-free bio-sensing platform based on a new class of resonances supported in a photonic crystal metasurface is reported herein. Molecular binding is detected as a shift in the resonant wavelength of the bound states in the continuum of radiation modes. The new configuration is applied to the recognition of the interaction between protein p53 and its protein regulatory partner murine double minute 2 (MDM2). A detection limit of 66 nM for the protein p53 is found. The device provides an excellent interrogation stability and loss-free operation, requires minimal optical interrogation equipment and can be easily optimized to work in a wide wavelength range.

4.
Proc Natl Acad Sci U S A ; 113(14): 3751-4, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001841

RESUMO

Writing on paper is essential to civilization, as Pliny the Elder remarks in his Natural History, when he describes the various types of papyri, the method of manufacturing them, and all that concerns writing materials in the mid-first century AD. For this reason, a rigorous scientific study of writing is of fundamental importance for the historical understanding of ancient societies. We show that metallic ink was used several centuries earlier than previously thought. In particular, we found strong evidence that lead was intentionally used in the ink of Herculaneum papyri and discuss the possible existence of ruled lines traced on the papyrus texture. In addition, the metallic concentrations found in these fragments deliver important information in view of optimizing future computed tomography (CT) experiments on still-unrolled Herculaneum scrolls to improve the readability of texts in the only surviving ancient Greco-Roman library.

5.
Sci Rep ; 6: 20763, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26854067

RESUMO

The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.


Assuntos
Cyperus , Tinta , Chumbo/análise , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X , Itália
6.
Nat Commun ; 6: 5895, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25603114

RESUMO

Hundreds of papyrus rolls, buried by the eruption of Mount Vesuvius in 79 AD and belonging to the only library passed on from Antiquity, were discovered 260 years ago at Herculaneum. These carbonized papyri are extremely fragile and are inevitably damaged or destroyed in the process of trying to open them to read their contents. In recent years, new imaging techniques have been developed to read the texts without unwrapping the rolls. Until now, specialists have been unable to view the carbon-based ink of these papyri, even when they could penetrate the different layers of their spiral structure. Here for the first time, we show that X-ray phase-contrast tomography can reveal various letters hidden inside the precious papyri without unrolling them. This attempt opens up new opportunities to read many Herculaneum papyri, which are still rolled up, thus enhancing our knowledge of ancient Greek literature and philosophy.

8.
Opt Lett ; 37(7): 1142-4, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466175

RESUMO

Digital holographic microscopy (DHM) has been successfully applied for the first time to characterize the radiative out-of-plane emission properties of a superdirective device. Complementarily to near-field microscopy, DHM allows us to reconstruct the beam in the far-field region. The angular dispersion of the light beam radiated from a grating composed of air and anti-air metamaterial has been determined, and the proposed technique has highlighted a collimation degree higher than 0.04°, as already evaluated in a previous work. Further considerations on the retrieved phase map of the beam in the acquisition plane are presented.

9.
Opt Express ; 18(24): 25068-74, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21164852

RESUMO

In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 µm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

10.
Opt Express ; 15(11): 6605-11, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19546969

RESUMO

When a wave impinges obliquely to the interface of a Photonic Crystal (PhC), the wave can be completely reflected in counter-propagating direction instead of the usually expected specular direction. However the beam is totally specularly reflected with a simple modification of the surface termination. The analysis of the time average Poynting vector evidences that PhC termination modifies the energy flow and determines the reflection properties.

11.
Opt Express ; 15(23): 15314-23, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19550817

RESUMO

We investigate from a theoretical point of view the photonic properties of a two dimensional photonic aperiodic crystal. These structures are obtained by removing the lattice points from a square arrangement, following the inflation rules emerging from the Thue-Morse sequence. The photonic bandgap analysis is performed by means of the density of states calculation. The mechanism of bandgap formation is investigated adopting the single scattering model, and the Mie scattering. The electromagnetic field distribution can be represented as quasi-localized states. Finally, a generalized method to obtain aperiodic photonic structures has been proposed.

12.
Opt Express ; 13(5): 1361-7, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19495011

RESUMO

We show that the refracted wave at the exit surface of a Photonic Crystal (PhC) slab is periodically modulated, in positive or in negative direction, changing the slab thickness. In spite of an always increasing literature, the effect of the thickness in negative refraction on PhC's does not seem to be appropriately considered. However such an effect is not surprising if interpreted with the help of Dynamical Diffraction Theory (DDT), which is generally applied in the x-ray diffraction. The thickness dependence is a direct result of the so-called Pendellösung phenomenon. That explains the periodic exchange, inside the crystal, of the energy among direct beam (or positively refracted) and diffracted beam (or negatively refracted). The Pendellösung phenomenon is an outstanding example of the application of the DDT as a powerful and simple tool for the analysis of s electromagnetic interaction in PhC's.

13.
Opt Express ; 13(19): 7699-707, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-19498797

RESUMO

Light passing through a photonic crystal can undergo a negative or a positive refraction. The two refraction states can be functions of the contrast index, the incident angle and the slab thickness. By suitably using these properties it is possible to realize very simple and very efficient optical components to route the light. As an example we present a passive device acting as a polarizing beam splitter where TM polarization is refracted in positive direction whereas TE component is negatively refracted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA