Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 108(2): 320-333, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638194

RESUMO

PREMISE: In semiarid regions, decreasing rainfall presents a challenge to perennial seedlings that must reach sufficient size to survive the first year's seasonal drought. Attaining a large storage organ size has been hypothesized to enhance drought resilience in geophytes, but building larger storage organs requires faster growth, but paradoxically, some traits that confer faster growth are highly sensitive to drought. We examined whether tuber size confers greater drought resilience in seedlings of four closely related geophytic species of Pelargonium. METHODS: We imposed two drought treatments when seedlings were 2 months old: chronic low water and acute water restriction for 10 days. Plants in the acute dry-down treatment were then rewatered at control levels. We compared morphological and ecophysiological traits at 2, 3, and 6 months of age and used mixed-effects models to identify traits determining tuber biomass at dormancy. RESULTS: Despite a 10-fold variation in size, species had similar physiological trait values under well-watered conditions. Chronic and acute droughts negatively affected tuber size at the end of the season, but only in the two species with large tubers. Chronic drought did not affect physiological traits of any species, but in response to acute drought, larger species showed reduced photosynthetic performance. Canopy area was the best predictor of final tuber biomass. CONCLUSIONS: Contradictory to the hypothesis that large tubers provide greater drought resiliency, small Pelargonium seedlings actually had higher drought tolerance, although at the expense of more vigorous growth compared to species with larger tubers under well-watered conditions.


Assuntos
Secas , Plântula , Biomassa , Fotossíntese , Água
2.
Plant J ; 105(6): 1477-1494, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295003

RESUMO

Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.


Assuntos
Lipídeos/análise , Magnoliopsida/química , Xilema/química , Galactolipídeos/análise , Galactolipídeos/metabolismo , Lipidômica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Filogenia , Estações do Ano , Xilema/metabolismo , Xilema/ultraestrutura
3.
Am J Bot ; 107(5): 735-748, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32399959

RESUMO

PREMISE: The functional significance of leaf margins has long been debated. In this study, we explore influences of climate, leaf lobing, woodiness, and shared evolutionary history on two leaf margin traits within the genus Pelargonium. METHODS: Leaves from 454 populations of Pelargonium (161 species) were collected in the Greater Cape Floristic Region and scored for tooth presence/absence and degree of lobing. Tooth density (number of teeth per interior perimeter distance) was calculated for a subset of these. We compared five hypotheses to explain tooth presence and density using mixed effect models. RESULTS: Tooth presence/absence was best predicted by the interaction of leaf lobing and mean annual temperature (MAT), but often in patterns opposite those previously reported: species were more likely to be toothed with warmer temperatures, particularly for unlobed and highly lobed leaves. In contrast, tooth density was best predicted by the interaction of MAT and the season of most rain; density declines with temperature as consistent with expectations, but only in winter-rain dominated areas. Woody and nonwoody species within Pelargonium have similar associations between tooth presence/absence and MAT, contrary to the expectation that patterns within nonwoody species would be insignificant. CONCLUSIONS: We conclude Pelargonium leaf margins show predictable responses to climate, but these responses are complex and can contradict those found for global patterns across plant communities.


Assuntos
Clima , Pelargonium , Evolução Biológica , Filogenia , Folhas de Planta
4.
New Phytol ; 219(2): 794-807, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749630

RESUMO

Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales.


Assuntos
Evolução Biológica , Meio Ambiente , Geraniaceae/fisiologia , Clima , Modelos Lineares , Filogenia , Característica Quantitativa Herdável
5.
Am Nat ; 185(4): 525-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811086

RESUMO

Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.


Assuntos
Evolução Biológica , Pelargonium/genética , Proteaceae/genética , Adaptação Fisiológica , Teorema de Bayes , Clima , Meio Ambiente , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , África do Sul
6.
Am J Bot ; 100(7): 1306-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23825139

RESUMO

PREMISE OF THE STUDY: Trait integration may improve prediction of species and lineage responses to future climate change more than individual traits alone, particularly when analyses incorporate effects of phylogenetic relationships. The South African genus Pelargonium contains divergent major clades that have radiated along the same seasonal aridity gradient, presenting the opportunity to ask whether patterns of evolution in mean leaf trait values are achieved through the same set of coordinated changes among traits in each clade. METHODS: Seven leaf traits were measured on field-collected leaves from one-third of the species (98) of the genus. Trait relationships were examined using phylogenetic regression within major clades. Disparity analysis determined whether the course of trait evolution paralleled historical climate change events. KEY RESULTS: Divergence in mean trait values between sister clades A1 and A2 was consistent with expectations for leaves differing in longevity, despite strong similarity between clades in trait interactions. No traits in either clade exhibited significant relationships with multivariate climate axes, with one exception. Species in clades C and A2 included in this study occupied similar environments. These clades had similar values of individual trait means, except for δ(13)C, but they exhibited distinctive patterns of trait integration. CONCLUSIONS: Differing present-day patterns of trait integration are consistent with interpretations of adaptive responses to the prevailing climate at the time of each clade's origin. These differing patterns of integration are likely to exert strong effects on clade-level responses to future climate change in the winter rainfall region of South Africa.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Pelargonium/anatomia & histologia , Pelargonium/genética , Regulação da Expressão Gênica de Plantas , Pelargonium/fisiologia , Chuva , Estações do Ano , África do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA