Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 23(1): 870, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974136

RESUMO

BACKGROUND: Frequent bacterial plaque buildup at the gingival margin and crevice can provoke an inflammatory reaction in gingival tissues which manifests as gingivitis. Probiotics could serve as a beneficial complementary therapy for treating gingival inflammation. The main aim of this research was to investigate the effect of the Lactobacillus plantarum MK06 probiotic strain on the treatment of gingivitis. METHODS: Patients with gingivitis, who were referred to a private clinic and were systematically healthy, were included in this randomized, triple-blind, placebo-controlled trial. They were instructed to use either placebo or Lactobacillus plantarum suspensions for one minute two times a day after tooth-brushing for four weeks. Then, the clinical parameters of gingivitis, including plaque index (PI), gingival index (GI), bleeding on probing (BOP), and oral hygiene index (OHI-s), were measured in the first, second, and fourth weeks. A total of forty-two patients were randomly assigned to the experimental (n = 21) and control (n = 21) groups. The mean age of the experimental and control groups was 29.10 and 28.48, respectively. RESULTS: The mean scores of BOP, GI, PI, and OHI-s reduced over time in both the control and test groups. However, according to the Mann-Whitney test, the difference between the two groups was not significant at the same time intervals (P ≥ 0.05) and only GI showed a significant difference in the fourth week (GI-3, P = 0.006). Nevertheless, the experimental group experienced a higher overall reduction rate than the control group. The BOP, GI, PI, and OHI-s scores decreased by 0.081, 0.204, 0.186, and 0.172 times in the second week, respectively, resulting from the interaction of time and the intervention, which considerably diminished these indices. CONCLUSION: This study shows the potential of the probiotic Lactobacillus plantarum MK06 suspension as a promoting therapeutic adjuvant in the treatment of gingivitis.


Assuntos
Gengivite , Lactobacillus plantarum , Probióticos , Humanos , Gengivite/tratamento farmacológico , Gengiva , Laticínios , Probióticos/uso terapêutico , Índice de Placa Dentária
2.
Iran J Biotechnol ; 19(3): e2686, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34825011

RESUMO

BACKGROUND: Antibiotic-resistant bacteria are a major threat to global health. Older antibiotics have become more or less ineffective as a result of widespread microbial resistance and an urgent need has emerged for the development of new antimicrobial strategies. Acidocin 4356 is a novel antimicrobial bacteriocin peptide produced by Lactobacillus acidophilus ATCC 4356 and capable of confronting the Pseudomonas aeruginosa ATCC 27853 infection challenges. According to our previous studies, the production of Acidocin 4356 is in parallel with cellular biomass production. OBJECTIVES: Given the costly production of Acidocin 4356, the development of a beneficial approach for increasing productivity of the cellular biomass has been targeted in the lab-scale fermenter for scale-up production of this bacteriocin. Therefore, in this study, we developed an inexpensive optimal culture medium based on the whey feedstock, evaluating this medium for scaling-up of the bacteriocin production from flask to fermenter. MATERIAL AND METHODS: In the first step, the optimization of the process parameters and medium components was carried out using the Plackett-Burman (PB) design and Response surface methodology (RSM) in flask culture. After optimization of the medium, bacteriocin production in the optimum culture medium was compared with de Man, Rogosa and Sharpe (MRS) medium by analyzing the intensity of the peptide band. Intensity analysis has been conducted on the PAGE band of the peptide using Image J software. Finally, the scale- up of bacteriocin production in the optimum culture medium was evaluated by batch fermentation in a 3-liter fermenter. RESULTS: In this study, a medium containing whey (40 g.L-1) and sodium acetate (5 g.L-1) was used as basal medium, and the effect of other factors were then evaluated. According to the PB design, three factors of peptone concentration, yeast extract concentrations and cultivation temperature were selected as the most effective factors which improve the growth of L. acidophilus. The condition providing the highest growth capacity for bacteriocin production were predicted based on the results of RSM as following: temperature 40 ° C, yeast (4 g.L-1), and peptone (8 g.L-1). Finally, the dry cell weight was obtained after incubation for 12 h as 2.25 g.L-1. Comparison of cell growth and bacteriocin production between MRS medium and optimized medium confirmed the efficacy of these optimal conditions for the cost-effective production of Acidocin 4356 in the flask. Besides, the scale- up of bacteriocin production has made under optimal condition in the 3-L fermenter. CONCLUSIONS: In this study, for the first time, scale- up production of Acidocin 4356 was presented by using a low-cost method based on whey feedstock to tackle P. aeruginosa infections.

3.
Probiotics Antimicrob Proteins ; 13(4): 982-992, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33687634

RESUMO

Among seven strains of lactic acid bacteria (LAB) isolated from traditional dairy products, a Lactobacillus strain was identified through 16S rRNA gene sequencing and tentatively designated as Lactobacillus brevis MK05. This strain demonstrated the highest probiotic potential through biochemical analysis, including acid and bile salt resistance, as well as antibacterial activity. The collected cell-free supernatant (CFC) of L. brevis MK05 culture, compared with MRS broth with pH equal to the pH for CFC, revealed antimicrobial activity against Escherichia coli (ATCC 25922) and Staphylococcus aureus subsp. aureus (ATCC 25923), possibly due to the presence of antibacterial metabolites other than organic acids. This strain was, therefore, selected to assess the biological activity of its partially purified secretory proteins against MCF-7 cancer cells and normal fibroblast cells via the MTT assay. The partially purified cell-secreted proteins of this strain (hereafter referred to as Lb-PPSPs) showed a time and dose-dependent anti-cancer and apoptosis induction function. There was a remarkable decline in the survival rate of MCF-7 cells at doses equal to and higher than 0.5 mg/mL after 48 h. The changes in expression of the three genes involved in the apoptosis pathway (BAX, BCL-2, and BCL2L11) in MCF-7 cells treated with the Lb-PPSPs confirm its cytotoxic activity and apoptosis induction.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Levilactobacillus brevis , Probióticos , Humanos , Levilactobacillus brevis/classificação , Células MCF-7 , RNA Ribossômico 16S
4.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169940

RESUMO

A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/farmacologia , Lactobacillus acidophilus/química , Pseudomonas aeruginosa/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cinética , Simulação de Dinâmica Molecular , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência/efeitos dos fármacos
5.
Methods Mol Biol ; 1995: 395-403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148141

RESUMO

Over the last decade, finding bacterial strains with ability to accumulate high concentrations of lipids has gained increasing interest, since these lipids may be used in different industries. Here we describe two methods for evaluation of lipid accumulation in cyanobacteria, following by our personal reflection on issues surrounding the use of these methods. First, we present the Bligh and Dyer protocol as a traditional extraction method using organic solvents for quantitative determination of lipids and next Nile red, a selective fluorescent stain, that has been used as a rapid approach for both qualitative and quantitative measurement of lipids.


Assuntos
Cianobactérias/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Cianobactérias/química , Corantes Fluorescentes/análise , Lipídeos/isolamento & purificação , Oxazinas/análise , Espectrometria de Fluorescência/métodos , Coloração e Rotulagem/métodos
6.
Environ Toxicol Pharmacol ; 51: 142-155, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28343753

RESUMO

In this study, we isolated five indigenous cyanobacterial strains from different aqueous environments, with heavy metals contamination, in East Azerbaijan Province (northwest portion of Iran). A strain was identified by morphological and 16S rRNA sequence analysis as Limnothrix sp. KO05 and selected for further studies as having the greatest potential for cadmium uptake. Scanning electron microscopy (SEM) demonstrated cyanobacterium Limnothrix sp. KO05 forms filamentous structures and is straight or curved to some extent. The utmost biosorption capacity was found to be 82.18±1.22mgg-1 at a Cd (II) concentration level of 150mgL-1. Langmuir adsorption isotherm indicated a better fit to the experimental data. Response surface methodology (RSM) on the basis of four independent variables and the predicted maximum biosorption efficiency was 98.7% under the optimum condition. FT-IR spectroscopy profile of the Cd treated sample as demonstrated in confirmation of the benefits of various functional groups of proteins and polysaccharides of cyanobacterial biomass, involved in surface binding of Cd. The determination of catalase (CAT) activity in strain KO05 exposed to Cd (II) concentrations of 2, 5 and 10mgL-1 showed an increase in enzyme activity after 24h exposure compared to unexposed cells. Correspondingly, CAT activity showed a significant decrease after 48h of treatment with Cd (II) concentrations of 5 and 10mgL-1. CAT activity was decreased significantly at all concentrations within 72h after exposure to Cd. On the contrary, while ascorbate peroxidase (APX) gave the expected lower activity compared to the CAT within 24h after Cd treatment, its activity lasted up to 72h. Limnothrix sp. KO05 cells treated with 5 and 10mgL-1 Cd (II) over 72h exposure showed a reduction in chlorophyll a contents compared to the controls. However, following exposure to Cd, chlorophyll a and carotenoid contents is reduced and after overcoming stress and deployment of an adaptation mechanism, the amounts of these pigments is gradually increased in the cells. The reduction was slower for chlorophyll a pigment compared to carotenoids that may be an indication of the physiological importance of chlorophyll pigment for the phtosynthetic cells. Results related to lipid peroxidation in Limnothrix sp. KO05 represent a significant increase of MDA in the first 24h after exposure to the different concentrations of Cd (2, 5 and 10mgL-1). However, the MDA levels were decreased over time and no significant difference attained after 72h exposure to Cd concentrations of 2 and 10mgL-1 compared to control.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Cianobactérias/efeitos dos fármacos , Cianobactérias/enzimologia , Modelos Teóricos , Poluentes Químicos da Água/toxicidade , Biodegradação Ambiental , Transporte Biológico , Biomassa , Cádmio/metabolismo , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Monitoramento Ambiental , Irã (Geográfico) , Poluentes Químicos da Água/metabolismo
7.
Microbiology (Reading) ; 162(2): 246-255, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747275

RESUMO

Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.


Assuntos
Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Nostoc/metabolismo , Biodegradação Ambiental , Biomassa , Catalase/metabolismo , Citoesqueleto/metabolismo , Peroxidação de Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Nostoc/genética , Peroxidase/metabolismo , RNA Ribossômico 16S/genética , Ausência de Peso
8.
Microbiology (Reading) ; 161(Pt 3): 662-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575545

RESUMO

The present study was conducted to determine the potential of five cyanobacteria strains isolated from aquatic zones to induce lipid production. The phylogenetic affiliation of the isolates was determined by 16S rRNA gene sequencing. Amongst the isolates, an efficient cyanobacterium, Synechococcus sp. HS01 showing maximal biomass and lipid productivity, was selected for further studies. In order to compare lipid productivity, the HS01 strain was grown in different media to screen potential significant culture ingredients and to evaluate mixotrophic cultivation. Mixotrophic cultivation of the strain using ostrich oil as a carbon source resulted in the best lipid productivity. GC analysis of fatty acid methyl esters of the selected cyanobacterial strain grown in media supplemented with ostrich oil showed a high content of C16 (palmitoleic acid and palmitic acid) and C18 (linoleic acid, oleic acid and linolenic acid) fatty acids of 42.7 and 42.8 %, respectively. Transmission electron micrographs showed that the HS01 cells exhibited an elongated rod-shaped appearance, either isolated, paired, linearly connected or in small clusters. According to initial experiments, ostrich oil, NaNO3 and NaCl were recognized as potential essential nutrients and selected for optimization of media with the goal of maximizing lipid productivity. A culture optimization technique using the response surface method demonstrated a maximum lipid productivity of 56.5 mg l(-1) day(-1). This value was 2.82-fold higher than that for the control, and was achieved in medium containing 1.12 g l(-1) NaNO3, 1 % (v/v) ostrich oil and 0.09 % (w/v) NaCl.


Assuntos
Lagos/microbiologia , Lipídeos/biossíntese , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Lipídeos/química , Filogenia , Synechococcus/genética , Synechococcus/isolamento & purificação
9.
J Biotechnol ; 186: 49-57, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24997353

RESUMO

In the current study, different protein expression profiles in a strain Brevundimonas sp. ZF12, isolated from the aqueous zone containing high levels of radiation, were characterized following exposure to cadmium (II) using a proteomic strategy. In order to gain a deeper understanding of the cellular events that allow this strain to survive and undergo cadmium adaptation and sorption, the strain was tested under three experimental conditions of 5, 10 and 30 ppm cadmium (II) ions stress. Two-dimensional polyacrylamide gel electrophoresis and mass spectrometry were used to identify the differentially expressed proteins under cadmium (II) stress. 20 differentially expressed spots were successfully identified by MS/MS analysis. These proteins are involved in DNA repair and protection, amino acid metabolism, nucleotide metabolism, energy homeostasis, oxidative stress response, redox homeostasis, protein folding and heat-shock response. The results obviously indicate that the ZF12 strain tends to endure the cadmium (II) stress conditions by modification in many aspects of its cellular physiology and metabolism.


Assuntos
Proteínas de Bactérias/análise , Cádmio/toxicidade , Caulobacteraceae/efeitos dos fármacos , Caulobacteraceae/metabolismo , Proteoma/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Fontes Termais/microbiologia , Espectrometria de Massas , Estresse Oxidativo , Proteoma/análise , Proteoma/química , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA