Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Resist Updat ; 68: 100959, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043916

RESUMO

Here, we describe a clinical case of pyrazinamide-resistant (PZA-R) tuberculosis (TB) reported as PZA-susceptible (PZA-S) by common molecular diagnostics. Phenotypic susceptibility testing (pDST) indicated PZA-R TB. Targeted Sanger sequencing reported wild-type PncA, indicating PZA-S TB. Whole Genome Sequencing (WGS) by PacBio and IonTorrent both detected deletion of a large portion of pncA, indicating PZA-R. Importantly, both WGS methods showed deletion of part of the primer region targeted by Sanger sequencing. Repeating Sanger sequencing from a culture in presence of PZA returned no result, revealing that 1) two minority susceptible subpopulations had vanished, 2) the PZA-R majority subpopulation harboring the pncA deletion could not be amplified by Sanger primers, and was thus obscured by amplification process. This case demonstrates how a small susceptible subpopulation can entirely obscure majority resistant populations from targeted molecular diagnostics and falsely imply homogenous susceptibility, leading to incorrect diagnosis. To our knowledge, this is the first report of a minority susceptible subpopulation masking a majority resistant population, causing targeted molecular diagnostics to call false susceptibility. The consequence of such genomic events is not limited to PZA. This phenomenon can impact molecular diagnostics' sensitivity whenever the resistance-conferring mutation is not fully within primer-targeted regions. This can be caused by structural changes of genomic context with phenotypic consequence as we report here, or by uncommon mechanisms of resistance. Such false susceptibility calls promote suboptimal treatment and spread of strains that challenge targeted molecular diagnostics. This motivates development of molecular diagnostics unreliant on primer conservation, and impels frequent WGS surveillance for variants that evade prevailing molecular diagnostics.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Patologia Molecular , Amidoidrolases/genética , Amidoidrolases/uso terapêutico , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Mutação
2.
Antimicrob Agents Chemother ; 66(6): e0207521, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35532237

RESUMO

Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Amicacina/farmacologia , Antituberculosos/farmacologia , Capreomicina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética
3.
mSystems ; 6(6): e0067321, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726489

RESUMO

Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants' PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCE Mycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33722890

RESUMO

Pyrazinamide (PZA) is a widely used antitubercular chemotherapeutic. Typically, PZA resistance (PZA-R) emerges in Mycobacterium tuberculosis strains with existing resistance to isoniazid and rifampin (i.e., multidrug resistance [MDR]) and is conferred by loss-of-function pncA mutations that inhibit conversion to its active form, pyrazinoic acid (POA). PZA-R departing from this canonical scenario is poorly understood. Here, we genotyped pncA and purported alternative PZA-R genes (panD, rpsA, and clpC1) with long-read sequencing of 19 phenotypically PZA-monoresistant isolates collected in Sweden and compared their phylogenetic and genomic characteristics to a large set of MDR PZA-R (MDRPZA-R) isolates. We report the first association of ClpC1 mutations with PZA-R in clinical isolates, in the ClpC1 promoter (clpC1p-138) and the N terminus of ClpC1 (ClpC1Val63Ala). Mutations have emerged in both these regions under POA selection in vitro, and the N-terminal region of ClpC1 has been implicated further, through its POA-dependent efficacy in PanD proteolysis. ClpC1Val63Ala mutants spanned 4 Indo-Oceanic sublineages. Indo-Oceanic isolates invariably harbored ClpC1Val63Ala and were starkly overrepresented (odds ratio [OR] = 22.2, P < 0.00001) among PZA-monoresistant isolates (11/19) compared to MDRPZA-R isolates (5/80). The genetic basis of Indo-Oceanic isolates' overrepresentation in PZA-monoresistant tuberculosis (TB) remains undetermined, but substantial circumstantial evidence suggests that ClpC1Val63Ala confers low-level PZA resistance. Our findings highlight ClpC1 as potentially clinically relevant for PZA-R and reinforce the importance of genetic background in the trajectory of resistance development.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Amidoidrolases/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Filogenia , Pirazinamida/farmacologia , Suécia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
5.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33502304

RESUMO

Whole-genome sequencing (WGS) is fundamental to Mycobacterium tuberculosis basic research and many clinical applications. Coverage across Illumina-sequenced M. tuberculosis genomes is known to vary with sequence context, but this bias is poorly characterized. Here, through a novel application of phylogenomics that distinguishes genuine coverage bias from deletions, we discern Illumina 'blind spots' in the M. tuberculosis reference genome for seven sequencing workflows. We find blind spots to be widespread, affecting 529 genes, and provide their exact coordinates, enabling salvage of unaffected regions. Fifty-seven pe/ppe genes (the primary families assumed to exhibit Illumina bias) lack blind spots entirely, while the remaining pe/ppe genes account for 55.1 % of blind spots. Surprisingly, we find coverage bias persists in homopolymers as short as 6 bp, shorter tracts than previously reported. While G+C-rich regions challenge all Illumina sequencing workflows, a modified Nextera library preparation that amplifies DNA with a high-fidelity polymerase markedly attenuates coverage bias in G+C-rich and homopolymeric sequences, expanding the 'Illumina-sequenceable' genome. Through these findings, and by defining workflow-specific exclusion criteria, we spotlight effective strategies for handling bias in M. tuberculosis Illumina WGS. This empirical analysis framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Viés , Biblioteca Gênica , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/normas , Fluxo de Trabalho
6.
mBio ; 13(1): e0043921, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100871

RESUMO

Pyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response. IMPORTANCE For decades, pyrazinamide has served as a cornerstone of tuberculosis therapy. Unlike any other antitubercular drug, pyrazinamide requires an acidic environment to exert its action. Despite its importance, the driver of this conditional susceptibility has remained unknown. In this study, a genome-wide approach revealed that pyrazinamide action is governed by the cell envelope stress response. This observation was validated by orthologous approaches that demonstrate that a central player of this response, SigE, is both necessary and sufficient for potentiation of pyrazinamide action. Moreover, constitutive activation of this response through deletion of the anti-sigma factor gene rseA or exposure of bacilli to drugs that target the cell wall was found to potently drive pyrazinamide susceptibility independent of environmental pH. These findings force a paradigm shift in our understanding of pyrazinamide action and open new avenues for improving diagnostic and therapeutic tools for tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Pirazinamida/uso terapêutico , Mycobacterium tuberculosis/genética , Amidoidrolases/metabolismo , Antituberculosos/farmacologia , Tuberculose/microbiologia , Mutação , Testes de Sensibilidade Microbiana
7.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107429

RESUMO

This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as 'intercellular mosaic methylation' (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.


Assuntos
Adenina/metabolismo , Metilação de DNA , Epigenoma , Variação Genética , Mycobacterium tuberculosis/genética , Mutação , Mycobacterium tuberculosis/metabolismo
8.
BMC Genomics ; 18(1): 302, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28415976

RESUMO

BACKGROUND: The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication. RESULTS: Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome. CONCLUSIONS: Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.


Assuntos
Mycobacterium tuberculosis/genética , Virulência/genética , Proteínas de Bactérias/genética , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genoma Bacteriano , Mutação , Regiões Promotoras Genéticas , Quinona Redutases/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA