Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biometals ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538957

RESUMO

Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.

2.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257271

RESUMO

Dye-decolorizing peroxidases (DyPs) are heme proteins with distinct structural properties and substrate specificities compared to classical peroxidases. Here, we demonstrate that DyP from the extremely radiation-resistant bacterium Deinococcus radiodurans is, like some other homologues, inactive at physiological pH. Resonance Raman (RR) spectroscopy confirms that the heme is in a six-coordinated-low-spin (6cLS) state at pH 7.5 and is thus unable to bind hydrogen peroxide. At pH 4.0, the RR spectra of the enzyme reveal the co-existence of high-spin and low-spin heme states, which corroborates catalytic activity towards H2O2 detected at lower pH. A sequence alignment with other DyPs reveals that DrDyP possesses a Methionine residue in position five in the highly conserved GXXDG motif. To analyze whether the presence of the Methionine is responsible for the lack of activity at high pH, this residue is substituted with a Glycine. UV-vis and RR spectroscopies reveal that the resulting DrDyPM190G is also in a 6cLS spin state at pH 7.5, and thus the Methionine does not affect the activity of the protein. The crystal structures of DrDyP and DrDyPM190G, determined to 2.20 and 1.53 Å resolution, respectively, nevertheless reveal interesting insights. The high-resolution structure of DrDyPM190G, obtained at pH 8.5, shows that one hydroxyl group and one water molecule are within hydrogen bonding distance to the heme and the catalytic Asparagine and Arginine. This strong ligand most likely prevents the binding of the H2O2 substrate, reinforcing questions about physiological substrates of this and other DyPs, and about the possible events that can trigger the removal of the hydroxyl group conferring catalytic activity to DrDyP.


Assuntos
Deinococcus , Extremófilos , Peróxido de Hidrogênio , Metionina , Racemetionina , Heme , Peroxidases
3.
Front Microbiol ; 14: 1266785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771704

RESUMO

The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two.

4.
Extremophiles ; 27(3): 26, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712998

RESUMO

Bacterial NAD+-dependent DNA ligases (LigAs) are enzymes involved in replication, recombination, and DNA-repair processes by catalyzing the formation of phosphodiester bonds in the backbone of DNA. These multidomain proteins exhibit four modular domains, that are highly conserved across species, with the BRCT (breast cancer type 1 C-terminus) domain on the C-terminus of the enzyme. In this study, we expressed and purified both recombinant full-length and a C-terminally truncated LigA from Deinococcus radiodurans (DrLigA and DrLigA∆BRCT) and characterized them using biochemical and X-ray crystallography techniques. Using seeds of DrLigA spherulites, we obtained ≤ 100 µm plate crystals of DrLigA∆BRCT. The crystal structure of the truncated protein was obtained at 3.4 Å resolution, revealing DrLigA∆BRCT in a non-adenylated state. Using molecular beacon-based activity assays, we demonstrated that DNA ligation via nick sealing remains unaffected in the truncated DrLigA∆BRCT. However, DNA-binding assays revealed a reduction in the affinity of DrLigA∆BRCT for dsDNA. Thus, we conclude that the flexible BRCT domain, while not critical for DNA nick-joining, plays a role in the DNA binding process, which may be a conserved function of the BRCT domain in LigA-type DNA ligases.


Assuntos
Deinococcus , Extremófilos , DNA Ligases , Deinococcus/genética , NAD , Reparo do DNA
5.
Protein Expr Purif ; 211: 106336, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419399

RESUMO

The PARP1 (Poly (ADP-ribose) polymerase 1) enzyme is essential for single and double-strand break repair in humans. Alterations affecting PARP1 activity have severe consequences for human health and are associated with pathologies like cancer, and metabolic and neurodegenerative disorders. Here, we have developed a fast and easy procedure for the expression and purification of PARP1. Biologically active protein was purified to an apparent purity > 95%, with only two purification steps. A thermostability analysis revealed that PARP1 possessed improved stability in 50 mM Tris-HCl pH 8.0 (Tm = 44.2 ± 0.3 °C), thus this buffer was used throughout the whole purification procedure. The protein was shown to bind to DNA and has no inhibitor molecules bound to the active site. Finally, the yield of the purified PARP1 protein is sufficient for both biochemical, biophysical and structural analysis. The new protocol provides a fast and simple purification procedure while producing similar protein quantities to what has been described previously.


Assuntos
Reparo do DNA , DNA , Humanos , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , DNA/química
6.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242030

RESUMO

The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1'-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below -30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors' protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode.

7.
Chem Commun (Camb) ; 58(90): 12568-12571, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279116

RESUMO

Human Endonuclease III (EndoIII), hNTH1, is an FeS containing enzyme which repairs oxidation damaged bases in DNA. We report here the first comparative biophysical study of full-length and an N-terminally truncated hNTH1, with a domain architecture homologous to bacterial EndoIII. Vibrational spectroscopy, spectroelectrochemistry and SAXS experiments reveal distinct properties of the two enzyme forms, and indicate that the N-terminal domain is important for DNA binding at the onset of damage recognition.


Assuntos
Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina) , Proteínas Ferro-Enxofre , Humanos , DNA , Endonucleases/genética , Proteínas Ferro-Enxofre/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Desoxirribonuclease (Dímero de Pirimidina)/química
8.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807515

RESUMO

Endonuclease III (EndoIII) is a bifunctional DNA glycosylase with specificity for a broad range of oxidized DNA lesions. The genome of an extremely radiation- and desiccation-resistant bacterium, Deinococcus radiodurans, possesses three genes encoding for EndoIII-like enzymes (DrEndoIII1, DrEndoIII2 and DrEndoIII3), which reveal different types of catalytic activities. DrEndoIII2 acts as the main EndoIII in this organism, while DrEndoIII1 and 3 demonstrate unusual and no EndoIII activity, respectively. In order to understand the role of DrEndoIII1 and DrEndoIII3 in D. radiodurans, we have generated mutants which target non-conserved residues in positions considered essential for classic EndoIII activity. In parallel, we have substituted residues coordinating the iron atoms in the [4Fe-4S] cluster in DrEndoIII2, aiming at elucidating the role of the cluster in these enzymes. Our results demonstrate that the amino acid substitutions in DrEndoIII1 reduce the enzyme activity without altering the overall structure, revealing that the residues found in the wild-type enzyme are essential for its unusual activity. The attempt to generate catalytic activity of DrEndoIII3 by re-designing its catalytic pocket was unsuccessful. A mutation of the iron-coordinating cysteine 199 in DrEndoIII2 appears to compromise the structural integrity and induce the formation of a [3Fe-4S] cluster, but apparently without affecting the activity. Taken together, we provide important structural and mechanistic insights into the three EndoIIIs, which will help us disentangle the open questions related to their presence in D. radiodurans and their particularities.


Assuntos
Extremófilos , Proteínas Ferro-Enxofre , Endonucleases/metabolismo , Extremófilos/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética
9.
Sci Rep ; 11(1): 16430, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385527

RESUMO

Until there is an effective implementation of COVID-19 vaccination program, a robust testing strategy, along with prevention measures, will continue to be the most viable way to control disease spread. Such a strategy should rely on disparate diagnostic tests to prevent a slowdown in testing due to lack of materials and reagents imposed by supply chain problems, which happened at the beginning of the pandemic. In this study, we have established a single-tube test based on RT-LAMP that enables the visual detection of less than 100 viral genome copies of SARS-CoV-2 within 30 min. We benchmarked the assay against the gold standard test for COVID-19 diagnosis, RT-PCR, using 177 nasopharyngeal RNA samples. For viral loads above 100 copies, the RT-LAMP assay had a sensitivity of 100% and a specificity of 96.1%. Additionally, we set up a RNA extraction-free RT-LAMP test capable of detecting SARS-CoV-2 directly from saliva samples, albeit with lower sensitivity. The saliva was self-collected and the collection tube remained closed until inactivation, thereby ensuring the protection of the testing personnel. As expected, RNA extraction from saliva samples increased the sensitivity of the test. To lower the costs associated with RNA extraction, we performed this step using an alternative protocol that uses plasmid DNA extraction columns. We also produced the enzymes needed for the assay and established an in-house-made RT-LAMP test independent of specific distribution channels. Finally, we developed a new colorimetric method that allowed the detection of LAMP products by the visualization of an evident color shift, regardless of the reaction pH.


Assuntos
Teste para COVID-19/métodos , COVID-19/virologia , Colorimetria/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , Humanos , Pandemias , Portugal/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Saliva/química , Saliva/virologia , Sensibilidade e Especificidade
10.
RSC Adv ; 10(19): 11095-11104, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495352

RESUMO

Dye decolorizing peroxidases (DyPs) are novel haem-containing peroxidases, which are structurally unrelated to classical peroxidases. They lack the highly conserved distal histidine that acts as an acid-base catalyst in the catalytic reaction of classical peroxidases, which implies distinct mechanistic properties. Despite the remarkable catalytic properties and recognized potential for biotechnology applications, the knowledge of DyP's structural features in solution, which govern the reactivity and catalysis, is lagging behind. Resonance Raman (RR) spectroscopy can reveal fine details of the active site structure in hemoproteins, reporting on the oxidation and spin state and coordination of the haem cofactor. We provide an overview of the haem binding pocket architecture of the enzymes from A, B and C DyP subfamilies, in the light of those established for classical peroxidases and search for subfamily specific features among DyPs. RR demonstrates that multiple spin populations typically co-exist in DyPs, like in the case of classical peroxidases. The haem spin/coordination state is strongly pH dependent and correlates well with the respective catalytic properties of DyPs. Unlike in the case of classical peroxidases, a surprisingly high abundance of catalytically incompetent low spin population is observed in several DyPs, and tentatively related to the alternative physiological function of these enzymes. The molecular details of active sites of DyPs, elucidated by RR spectroscopy, can furthermore guide approaches for biotechnological exploitation of these promising biocatalysts.

11.
DNA Repair (Amst) ; 78: 45-59, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959406

RESUMO

Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that removes oxidized pyrimidines from DNA. The genome of Deinococcus radiodurans encodes for an unusually high number of DNA glycosylases, including three EndoIII enzymes (drEndoIII1-3). Here, we compare the properties of these enzymes to those of their well-studied homologues from E. coli and human. Our biochemical and mutational data, reinforced by MD simulations of EndoIII-DNA complexes, reveal that drEndoIII2 exhibits a broad substrate specificity and a catalytic efficiency surpassing that of its counterparts. In contrast, drEndoIII1 has much weaker and uncoupled DNA glycosylase and AP-lyase activities, a characteristic feature of eukaryotic DNA glycosylases, and was found to present a relatively robust activity on single-stranded DNA substrates. To our knowledge, this is the first report of such an activity for an EndoIII. In the case of drEndoIII3, no catalytic activity could be detected, but its ability to specifically recognize lesion-containing DNA using a largely rearranged substrate binding pocket suggests that it may play an alternative role in genome maintenance. Overall, these findings reveal that D. radiodurans possesses a unique set of DNA repair enzymes, including three non-redundant EndoIII variants with distinct properties and complementary activities, which together contribute to genome maintenance in this bacterium.


Assuntos
Reparo do DNA , DNA Complementar/genética , Deinococcus/enzimologia , Deinococcus/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Mutação , Biocatálise , DNA Complementar/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/química , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Pirimidinas/metabolismo , Especificidade por Substrato
12.
J Biol Chem ; 294(1): 157-167, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420426

RESUMO

Siderophores make iron accessible under iron-limited conditions and play a crucial role in the survival of microorganisms. Because of their remarkable metal-scavenging properties and ease in crossing cellular envelopes, siderophores hold great potential in biotechnological applications, raising the need for a deeper knowledge of the molecular mechanisms underpinning the siderophore pathway. Here, we report the structural and functional characterization of a siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIBM400 (SfSIP). SfSIP is a flavin-containing ferric-siderophore reductase with FAD- and NAD(P)H-binding domains that have high homology with other characterized SIPs. However, we found here that it mechanistically departs from what has been described for this family of proteins. Unlike other FAD-containing SIPs, SfSIP did not discriminate between NADH and NADPH. Furthermore, SfSIP required the presence of the Fe2+-scavenger, ferrozine, to use NAD(P)H to drive the reduction of Shewanella-produced hydroxamate ferric-siderophores. Additionally, this is the first SIP reported that also uses a ferredoxin as electron donor, and in contrast to NAD(P)H, its utilization did not require the mediation of ferrozine, and electron transfer occurred at fast rates. Finally, FAD oxidation was thermodynamically coupled to deprotonation at physiological pH values, enhancing the solubility of ferrous iron. On the basis of these results and the location of the SfSIP gene downstream of a sequence for putative binding of aerobic respiration control protein A (ArcA), we propose that SfSIP contributes an additional layer of regulation that maintains cellular iron homeostasis according to environmental cues of oxygen availability and cellular iron demand.


Assuntos
Organismos Aquáticos/química , Proteínas de Bactérias/química , Shewanella/química , Sideróforos , Organismos Aquáticos/genética , Proteínas de Bactérias/genética , Flavina-Adenina Dinucleotídeo/química , NADP/química , Domínios Proteicos , Shewanella/genética
13.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 7): 419-424, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969105

RESUMO

Deinococcus radiodurans is a bacterium with extreme resistance to desiccation and radiation. The resistance mechanism is unknown, but an efficient reactive oxygen species (ROS) scavenging system and DNA-repair and DNA-protection mechanisms are believed to play important roles. Here, the cloning and small- and medium-scale expression tests of a novel dye-decolourizing peroxidase from D. radiodurans (DrDyP) using three different Escherichia coli strains and three different temperatures in order to identify the optimum conditions for the expression of recombinant DrDyP are presented. The best expression conditions were used for large-scale expression and yielded ∼10 mg recombinant DrDyP per litre of culture after purification. Initial characterization experiments demonstrated unusual features with regard to the haem spin state, which motivated the crystallization experiment. The obtained crystals were used for data collection and diffracted to 2.2 Šresolution. The crystals belonged to the trigonal space group P31 or P32, with unit-cell parameters a = b = 64.13, c = 111.32 Å, and are predicted to contain one DrDyP molecule per asymmetric unit. Structure determination by molecular replacement using previously determined structures of dye-decolourizing peroxidases with ∼30% sequence identity at ∼2 Šresolution as templates are ongoing.


Assuntos
Clonagem Molecular/métodos , Deinococcus/enzimologia , Deinococcus/genética , Peroxidase/química , Peroxidase/genética , Sequência de Aminoácidos , Cristalização/métodos , Regulação Bacteriana da Expressão Gênica , Peroxidase/biossíntese , Difração de Raios X/métodos
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 188: 149-154, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28709140

RESUMO

Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.


Assuntos
Biocatálise , Eletroquímica/métodos , Endonucleases/química , Endonucleases/metabolismo , Mutação/genética , Aminoácidos/química , Sequência Conservada , Deinococcus , Enzimas Imobilizadas/metabolismo , Modelos Moleculares , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
15.
Comput Struct Biotechnol J ; 14: 168-176, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924191

RESUMO

The Deinococcus radiodurans bacterium is extremely resistant to ionising radiation and desiccation and can withstand a 200-fold higher radiation dose than most other bacteria with no loss of viability. The mechanisms behind this extreme resistance are not fully understood, but it is clear that several factors contribute to this phenotype. Efficient scavenging of reactive oxygen species and repair of damaged DNA are two of these. In this review, we summarise the results from a decade of structural and functional studies of the DNA repair machinery of Deinococcus radiodurans and discuss how these studies have contributed to an improved understanding of the molecular mechanisms underlying DNA repair and to the outstanding resistance of Deinococcus radiodurans to DNA damaging agents.

16.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 667-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599855

RESUMO

Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Šresolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, ß = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Šresolution SIP structures with ∼30% sequence identity as templates are ongoing.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Shewanella/química , Sideróforos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/metabolismo , Sideróforos/metabolismo , Difração de Raios X
17.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2137-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457437

RESUMO

Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.


Assuntos
DNA/metabolismo , Deinococcus/enzimologia , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA/química , Deinococcus/química , Deinococcus/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência
18.
J Struct Biol ; 191(2): 87-99, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26172070

RESUMO

While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.


Assuntos
Proteínas de Bactérias/química , Deinococcus/enzimologia , Desoxirribonuclease (Dímero de Pirimidina)/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade
19.
BMC Struct Biol ; 15: 5, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25886944

RESUMO

BACKGROUND: Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III ß subunit (ß-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans ß-clamp (Drß-clamp) at 2.0 Å resolution. RESULTS: The sequence verification process revealed that at the time of the study the gene encoding Drß-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial ß-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. CONCLUSIONS: The structure of Drß-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase III/química , Deinococcus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Deinococcus/química , Deinococcus/enzimologia , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática
20.
FEBS Open Bio ; 5: 107-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25737836

RESUMO

Upon infection by pathogenic bacteria, production of reactive oxygen species (ROS) is part of the host organism's first line of defence. ROS damage a number of macromolecules, and in order to withstand such a harsh environment, the bacteria need to have well-functioning ROS scavenging and repair systems. Herein, MutT is an important nucleotide-pool sanitization enzyme, which degrades 8-oxo-dGTP and thus prevents it from being incorporated into DNA. In this context, we have performed a comparative biochemical and structural analysis of MutT from the fish pathogen Aliivibrio salmonicida (AsMutT) and the human pathogen Vibrio cholerae (VcMutT), in order to analyse their function as nucleotide sanitization enzymes and also determine possible cold-adapted properties of AsMutT. The biochemical characterisation revealed that both enzymes possess activity towards the 8-oxo-dGTP substrate, and that AsMutT has a higher catalytic efficiency than VcMutT at all temperatures studied. Calculations based on the biochemical data also revealed a lower activation energy (E a) for AsMutT compared to VcMutT, and differential scanning calorimetry experiments showed that AsMutT displayed an unexpected higher melting temperature (T m) value than VcMutT. A comparative analysis of the crystal structure of VcMutT, determined to 2.42 Å resolution, and homology models of AsMutT indicate that three unique Gly residues in loops of VcMutT, and additional long range ion-pairs in AsMutT could explain the difference in temperature stability of the two enzymes. We conclude that AsMutT is a stable, cold-active enzyme with high catalytic efficiency and reduced E a, compared to the mesophilic VcMutT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA