Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(7): e1010828, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440574

RESUMO

The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Animais , Humanos , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Mitocôndrias/genética , Ubiquitina-Proteína Ligases/genética , Drosophila/metabolismo , Músculos/metabolismo , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética
2.
Nat Commun ; 14(1): 2932, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217484

RESUMO

In nervous systems, retrograde signals are key for organizing circuit activity and maintaining neuronal homeostasis. We identify the conserved Allnighter (Aln) pseudokinase as a cell non-autonomous regulator of proteostasis responses necessary for normal sleep and structural plasticity of Drosophila photoreceptors. In aln mutants exposed to extended ambient light, proteostasis is dysregulated and photoreceptors develop striking, but reversible, dysmorphology. The aln gene is widely expressed in different neurons, but not photoreceptors. However, secreted Aln protein is retrogradely endocytosed by photoreceptors. Inhibition of photoreceptor synaptic release reduces Aln levels in lamina neurons, consistent with secreted Aln acting in a feedback loop. In addition, aln mutants exhibit reduced night time sleep, providing a molecular link between dysregulated proteostasis and sleep, two characteristics of ageing and neurodegenerative diseases.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Retroalimentação , Proteostase , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914137

RESUMO

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Assuntos
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estresse do Retículo Endoplasmático , Nucleotidiltransferases , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Camundongos , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Estresse Fisiológico/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
iScience ; 24(1): 101880, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458605

RESUMO

In adult males, spermatogonia maintain lifelong spermatozoa production for oocyte fertilization. To understand spermatogonial metabolism we compared gene profiles in rat spermatogonia to publicly available mouse, monkey, and human spermatogonial gene profiles. Interestingly, rat spermatogonia expressed metabolic control factors Foxa1, Foxa2, and Foxa3. Germline Foxa2 was enriched in Gfra1Hi and Gfra1Low undifferentiated A-single spermatogonia. Foxa2-bound loci in spermatogonial chromatin were overrepresented by conserved stemness genes (Dusp6, Gfra1, Etv5, Rest, Nanos2, Foxp1) that intersect bioinformatically with conserved glutathione/pentose phosphate metabolism genes (Tkt, Gss, Gc l c , Gc l m, Gpx1, Gpx4, Fth), marking elevated spermatogonial GSH:GSSG. Cystine-uptake and intracellular conversion to cysteine typically couple glutathione biosynthesis to pentose phosphate metabolism. Rat spermatogonia, curiously, displayed poor germline stem cell viability in cystine-containing media, and, like primate spermatogonia, exhibited reduced transsulfuration pathway markers. Exogenous cysteine, cysteine-like mercaptans, somatic testis cells, and ferroptosis inhibitors counteracted the cysteine-starvation-induced spermatogonial death and stimulated spermatogonial growth factor activity in vitro.

5.
Annu Rev Cell Dev Biol ; 36: 265-289, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021820

RESUMO

Maintaining mitochondrial health is essential for the survival and function of eukaryotic organisms. Misfunctioning mitochondria activate stress-responsive pathways to restore mitochondrial network homeostasis, remove damaged or toxic proteins, and eliminate damaged organelles via selective autophagy of mitochondria, a process termed mitophagy. Failure of these quality control pathways is implicated in the pathogenesis of Parkinson's disease and other neurodegenerative diseases. Impairment of mitochondrial quality control has been demonstrated to activate innate immune pathways, including inflammasome-mediated signaling and the antiviral cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)-regulated interferon response. Immune system malfunction is a common hallmark in many neurodegenerative diseases; however, whether inflammation suppresses or exacerbates disease pathology is still unclear. The goal of this review is to provide a historical overview of the field, describe mechanisms of mitochondrial quality control, and highlight recent advances on the emerging role of mitochondria in innate immunity and inflammation.


Assuntos
Imunidade Inata , Mitocôndrias/metabolismo , Animais , Apoptose , DNA Mitocondrial/genética , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo
6.
Sci Rep ; 9(1): 2475, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792494

RESUMO

The Drosophila Ncc69 gene encodes a Na+-K+-2Cl--cotransporter (NKCC) that is critical for regulating intra- and extracellular ionic conditions in different tissues. Here, we show that the Ncc69 transporter is necessary for fly vision and that its expression is required non-autonomously in glia to maintain visual synaptic transmission. Flies mutant for Ncc69 exhibit normal photoreceptor depolarization in response to a light pulse but lack the ON and OFF-transients characteristic of postsynaptic responses of lamina neurons, indicating a failure in synaptic transmission. We also find that synaptic transmission requires the Ncc69 regulatory kinases WNK and Fray in glia. The ERG phenotype is associated with a defect in the recycling of the histamine neurotransmitter. Ncc69 mutants exhibit higher levels of the transport metabolite carcinine in lamina cartridges, with its accumulation most intense in the extracellular space. Our work reveals a novel role of glial NKCC transporters in synaptic transmission, possibly through regulating extracellular ionic conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Neuroglia/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Carnosina/análogos & derivados , Carnosina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Histamina/metabolismo , Mutação , Fenótipo , Simportadores de Cloreto de Sódio-Potássio/genética , Transmissão Sináptica
7.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015618

RESUMO

In response to environmental, developmental, and pathological stressors, cells engage homeostatic pathways to maintain their function. Among these pathways, the Unfolded Protein Response protects cells from the accumulation of misfolded proteins in the ER. Depending on ER stress levels, the ER-resident Fic protein catalyzes AMPylation or de-AMPylation of BiP, the major ER chaperone and regulator of the Unfolded Protein Response. This work elucidates the importance of the reversible AMPylation of BiP in maintaining the Drosophila visual system in response to stress. After 72 hr of constant light, photoreceptors of fic-null and AMPylation-resistant BiPT366A mutants, but not wild-type flies, display loss of synaptic function, disintegration of rhabdomeres, and excessive activation of ER stress reporters. Strikingly, this phenotype is reversible: photoreceptors regain their structure and function within 72 hr once returned to a standard light:dark cycle. These findings show that Fic-mediated AMPylation of BiP is required for neurons to adapt to transient stress demands.


Assuntos
Adaptação Fisiológica , Monofosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Luz , Nucleotidiltransferases/metabolismo , Células Fotorreceptoras/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Drosophila , Células Fotorreceptoras/efeitos da radiação
9.
J Biol Chem ; 292(51): 21193-21204, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29089387

RESUMO

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Nucleotidiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Linhagem Celular , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Anormalidades do Olho/veterinária , Feminino , Homozigoto , Cinética , Masculino , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Especificidade de Órgãos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sobrevida , Mutações Sintéticas Letais
10.
Elife ; 4: e10972, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26653853

RESUMO

Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine-carcinine cycle.


Assuntos
Carnosina/análogos & derivados , Drosophila/fisiologia , Histamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras/metabolismo , Animais , Carnosina/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Testes Genéticos , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA