Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 18666, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26690504

RESUMO

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic food web structure and alteration of the important role of inland waters in the global carbon cycle. However, multi-decadal studies that document the net ecological consequences of long-term browning are lacking. Here we show that browning over a 27 year period in two lakes of differing transparency resulted in fundamental changes in vertical habitat gradients and food web structure, and that these responses were stronger in the more transparent lake. Surface water temperatures increased by 2-3 °C in both lakes in the absence of any changes in air temperature. Water transparency to ultraviolet (UV) radiation showed a fivefold decrease in the more transparent lake. The primary zooplankton grazers decreased, and in the more transparent lake were largely replaced by a two trophic level zooplankton community. These findings provide new insights into the net effects of the complex and contrasting mechanisms that underlie the ecosystem consequences of browning.


Assuntos
Ecossistema , Lagos , Poluição da Água/análise , Ar , Animais , Fotossíntese , Estações do Ano , Temperatura , Fatores de Tempo , Raios Ultravioleta , Água , Vento , Zooplâncton/fisiologia
2.
Photochem Photobiol ; 85(1): 144-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18700864

RESUMO

The biological responses of four freshwater daphniid species, Daphnia middendorffiana, D. pulicaria, D. pulex and D. parvula, to a single acute dose of ultraviolet B radiation (UVB) were compared. In addition to survival, we compared the induction of DNA damage (i.e. cyclobutane pyrimidine dimers) between species as well as the ability to repair this damage in the presence or absence of photoreactivating light. All four species showed high levels of shielding against DNA damage when compared to damage induced in purified DNA dosimeters at the same time and dose. Significant variation in survival was observed between species depending on temperature and light conditions. Contrary to our expectations, all species showed significantly higher survival and light-dependent DNA damage removal rates at 10 degrees C compared to 20 degrees C, suggesting that the enhanced rate of photoenzymatic repair (PER) at the lower temperature contributed significantly to the recovery of these organisms from UVB. PER was highly effective in promoting survival of three of the four species at 10 degrees C, but at 20 degrees C it was only partially effective in two species, and ineffective in two others. None of the species showed significant dark repair at 20 degrees C and only D. pulicaria showed a significant capacity at 10 degrees C. Two species, D. middendorffiana and D. pulex, showed some short-term survival at 10 degrees C in absence of PER despite their inability to repair any appreciable amount of DNA damage in the dark. All species died rapidly at 20 degrees C in absence of PER, as predicted from complete or near-absence of nucleotide excision repair (NER). Overall, the protective effects of tissue structure and pigmentation were similar in all Daphnia species tested and greatly mitigated the absorption of UVB by DNA and its damaging effects. Surprisingly, the visibly melanotic D. middendorffiana was not better shielded from DNA damage than the three non-melanotic species, and in fact suffered the highest damage rates. Melanin content in this species was not temperature dependent under the experimental growth conditions, and so did not contribute to temperature-dependent responses. It is evident that different species within the same genus have developed diverse biological responses to UVB. Our data strongly suggest that DNA damage is lethal to Daphnia and that photoenzymatic repair is the primary mechanism for removing these lesions. In the absence of light, few species are capable of removing any DNA damage. Surprisingly, the single species in which significant excision repair was detected did so only at reduced temperature. This temperature-dependence of excision repair is striking and may reflect adaptations of certain organisms to stress in a complex and changing environment.


Assuntos
Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , DNA/genética , Daphnia/genética , Daphnia/efeitos da radiação , Água Doce , Temperatura , Raios Ultravioleta , Animais , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA