Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 596(13): 2565-2579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682760

RESUMO

KEY POINTS: Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2-/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. ABSTRACT: Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2-/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2-/- mice display a slight but significant decrease in its specific force. Park2-/- muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2+/+ muscles, the mitochondrial function of Park2-/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2-/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles.


Assuntos
Mitocôndrias/patologia , Contração Muscular , Músculo Esquelético/patologia , Biogênese de Organelas , Estresse Oxidativo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Autofagia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Músculo Esquelético/metabolismo
2.
Food Nutr Res ; 61(1): 1325309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659735

RESUMO

Background: Pulmonary Pseudomonas aeruginosa infection in cystic fibrosis patients is associated with skeletal muscle atrophy. In this study, we investigated the effects of P. aeurginosa infection and a whey protein-rich diet on skeletal muscle proteolytic pathways. Design: An agar bead model of pulmonary P. aeurginosa infection was established in adult C57/Bl6 mice. Protein ubiquitinaiton, lipidation of LC3B protein and expressions of autophagy-related genes and ubiquitin E3 ligases were quantified using immunoblotting and qPCR. The effects of pressure-treated whey protein diet on muscle proteolysis were also evaluated. Results: Pulmonary P. aeurginosa infection reduced diaphragm, tibialis anterior, and soleus muscle weights and increased protein ubiquitination, LC3B protein lipidation, and the expressions of Lc3b, Gabarapl1, Bnip3, Parkin, Atrogin-1, and MuRF1 genes in each muscle. These changes were greater in the tibialis as compared to soleus and diaphragm. Proteolysis indicators increased within one day of infection but were not evident after seven days of infection. A pressurized whey diet attenuated LC3B protein lipidation, expressions of autophagy-related genes (BNIP3), pro-inflammatory cytokines, and protein ubiquitination. Conclusions: We conclude that pulmonary P. aeruginosa infection activates the autophagy, and the proteasome pathways in skeletal muscles and that a pressurized whey protein diet attenuates muscle proteolysis in this model.

3.
Thorax ; 71(5): 436-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27033022

RESUMO

BACKGROUND: Prolonged controlled mechanical ventilation (CMV) in humans and experimental animals results in diaphragm fibre atrophy and injury. In animals, prolonged CMV also triggers significant declines in diaphragm myofibril contractility. In humans, the impact of prolonged CMV on myofibril contractility remains unknown. The objective of this study was to evaluate the effects of prolonged CMV on active and passive human diaphragm myofibrillar force generation and myofilament protein levels. METHODS AND RESULTS: Diaphragm biopsies were obtained from 13 subjects undergoing cardiac surgery (control group) and 12 brain-dead organ donors (CMV group). Subjects in each group had been mechanically ventilated for 2-4 and 12-74 h, respectively. Specific force generation of diaphragm myofibrils was measured with atomic force cantilevers. Rates of force development (Kact), force redevelopment after a shortening protocol (Ktr) and relaxation (Krel) in fully activated myofibrils (pCa(2+)=4.5) were calculated to assess myosin cross-bridge kinetics. Myofilament protein levels were measured with immunoblotting and specific antibodies. Prolonged CMV significantly decreased active and passive diaphragm myofibrillar force generation, Kact, Ktr and Krel. Myosin heavy chain (slow), troponin-C, troponin-I, troponin-T, tropomyosin and titin protein levels significantly decreased in response to prolonged CMV, but no effects on α-actin, α-actinin or nebulin levels were observed. CONCLUSIONS: Prolonged CMV in humans triggers significant decreases in active and passive diaphragm myofibrillar force generation. This response is mediated, in part, by impaired myosin cross-bridge kinetics and decreased myofibrillar protein levels.


Assuntos
Diafragma/metabolismo , Diafragma/fisiopatologia , Cardiopatias , Contração Muscular , Miofibrilas/metabolismo , Respiração Artificial/efeitos adversos , Actinina/metabolismo , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Casos e Controles , Conectina/metabolismo , Diafragma/patologia , Feminino , Cardiopatias/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Miofibrilas/patologia , Cadeias Pesadas de Miosina/metabolismo , Fatores de Risco , Fatores de Tempo , Doadores de Tecidos , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 308(7): R576-89, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25608750

RESUMO

Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.


Assuntos
Angiopoietina-1/metabolismo , Terapia Genética/métodos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/terapia , Regeneração , Adenoviridae/genética , Adulto , Angiopoietina-1/genética , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Cardiotoxinas , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Mioblastos/metabolismo , Mioblastos/patologia , Necrose , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
5.
Antioxid Redox Signal ; 20(3): 443-59, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24180497

RESUMO

OBJECTIVE: To evaluate the effects of physiological levels of mitochondrial-derived reactive oxygen species (ROS) on skeletal muscle autophagy, a proteolytic pathway designed to regulate contractile and myofilament homeostasis and to recycle long-lived proteins and damaged organelles. RESULTS: Basal levels of autophagy and autophagy triggered by 1.5 to 4 h of acute nutrient deprivation, rapamycin treatment, or leucine deprivation were measured in differentiated C2C12 myotubes using long-lived protein degradation assays, LC3B lipidation, autophagy-related gene expression, and electron microscopy. Preincubation with the general antioxidants tempol (superoxide dismutase mimic) and N-acetyl cysteine (NAC) or the mitochondria-specific antioxidants mito-tempol and SS31 significantly decreased the rates of long-lived protein degradation and LC3B flux and blocked the induction of autophagy-related gene expression. Mitochondrial ROS levels significantly increased in response to acute nutrient deprivation and rapamycin treatment. Mito-tempol and tempol blocked this response. Antioxidants decreased AMP-activated protein kinase (AMPK) phosphorylation by 40% and significantly increased protein kinase B (AKT) phosphorylation, but exerted no effects on mTORC1-dependent ULK1 phosphorylation on Ser(555). NAC significantly decreased basal LC3B autophagic flux in skeletal muscles of mice. INNOVATION: We report for the first time that endogenous ROS promote skeletal muscle autophagy at the basal level and in response to acute nutrient starvation and mTORC1 inhibition. We also report for the first time that mitochondrial-derived ROS promote skeletal muscle autophagy and that this effect is mediated, in part, through regulation of autophagosome initiation and AKT inhibition. CONCLUSION: Mitochondrial-derived ROS promote skeletal muscle autophagy and this effect is mediated, in part, through activation of AMPK and inhibition of AKT.


Assuntos
Autofagia/genética , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Óxidos N-Cíclicos/farmacologia , Alimentos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais , Sirolimo/farmacologia , Marcadores de Spin
6.
Autophagy ; 9(11): 1837-51, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24121678

RESUMO

Mitochondrial quality control plays a vital role in the maintenance of optimal mitochondrial function. However, its roles and regulation remain ill-defined in cardiac pathophysiology. Here, we tested the hypothesis that PARK2/Parkin, an E3-ligase recently described as being involved in the regulation of cardiac mitophagy, is important for (1) the maintenance of normal cardiac mitochondrial function; and (2) adequate recovery from sepsis, a condition known to induce reversible mitochondrial injury through poorly understood mechanisms. Investigations of mitochondrial and cardiac function were thus performed in wild-type and Park2-deficient mice at baseline and at 2 different times following administration of a sublethal dose of E. coli lipopolysaccharide (LPS). LPS injection induced cardiac and mitochondrial dysfunctions that were followed by complete recovery in wild-type mice. Recovery was associated with morphological and biochemical evidence of mitophagy, suggesting that this process is implicated in cardiac recovery from sepsis. Under baseline conditions, multiple cardiac mitochondrial dysfunctions were observed in Park2-deficient mice. These mild dysfunctions did not result in a visibly distinct cardiac phenotype. Importantly, Park2-deficient mice exhibited impaired recovery of cardiac contractility and constant degradation of mitochondrial metabolic functions. Interestingly, autophagic clearance of damaged mitochondria was still possible in the absence of PARK2 likely through compensatory mechanisms implicating PARK2-independent mitophagy and upregulation of macroautophagy. Together, these results thus provide evidence that in vivo, mitochondrial autophagy is activated during sepsis, and that compensation for a lack of PARK2 is only partial and/or that PARK2 exerts additional protective roles in mitochondria.


Assuntos
Cardiotônicos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Contração Miocárdica , Sepse/metabolismo , Sepse/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagia , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Mitofagia , Miocárdio/patologia , Permeabilidade , Fenótipo , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência , Função Ventricular Esquerda
7.
Autophagy ; 9(10): 1604-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955121

RESUMO

Autophagy is an important proteolytic pathway in skeletal muscles. The roles of muscle fiber type composition and oxidative capacity remain unknown in relation to autophagy. The diaphragm (DIA) is a fast-twitch muscle fiber with high oxidative capacity, the tibialis anterior (TA) muscle is a fast-twitch muscle fiber with low oxidative capacity, and the soleus muscle (SOL) is a slow-twitch muscle with high oxidative capacity. We hypothesized that oxidative capacity is a major determinant of autophagy in skeletal muscles. Following acute (24 h) starvation of adult C57/Bl6 mice, each muscle was assessed for autophagy and compared with controls. Autophagy was measured by monitoring autophagic flux following leupeptin (20 mg/kg) or colchicine (0.4 mg/kg/day) injection. Oxidative capacity was measured by monitoring citrate synthase activity. In control mice, autophagic flux values were significantly greater in the TA than in the DIA and SOL. In acutely starved mice, autophagic flux increased, most markedly in the TA, and several key autophagy-related genes were significantly induced. In both control and starved mice, there was a negative linear correlation of autophagic flux with citrate synthase activity. Starvation significantly induced AMPK phosphorylation and inhibited AKT and RPS6KB1 phosphorylation, again most markedly in the TA. Starvation induced Foxo1, Foxo3, and Foxo4 expression and attenuated the phosphorylation of their gene products. We conclude that both basal and starvation-induced autophagic flux are greater in skeletal muscles with low oxidative capacity as compared with those with high oxidative capacity and that this difference is mediated through selective activation of the AMPK pathway and inhibition of the AKT-MTOR pathways.


Assuntos
Autofagia/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Inanição/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Oxirredução , Fosforilação , Transdução de Sinais/fisiologia
8.
J Appl Physiol (1985) ; 114(9): 1309-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23305976

RESUMO

The role of angiogenesis factors in skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is unknown. The first objective of this study was to assess various pro- and antiangiogenic factor and receptor expressions in the vastus lateralis muscles of control subjects and COPD patients. Preliminary inquiries revealed that angiopoietin-2 (ANGPT2) is overexpressed in limb muscles of COPD patients. ANGPT2 promotes skeletal satellite cell survival and differentiation. Factors that are involved in regulating muscle ANGPT2 production are unknown. The second objective of this study was to evaluate how oxidants and proinflammatory cytokines influence muscle-derived ANGPT2 expression. Angiogenic gene expressions in human vastus lateralis biopsies were quantified with low-density real-time PCR arrays. ANGPT2 mRNA expressions in cultured skeletal myoblasts were quantified in response to proinflammatory cytokine and H2O2 exposure. Ten proangiogenesis genes, including ANGPT2, were significantly upregulated in the vastus lateralis muscles of COPD patients. ANGPT2 mRNA levels correlated negatively with forced expiratory volume in 1 s and positively with muscle wasting. Immunoblotting confirmed that ANGPT2 protein levels were significantly greater in muscles of COPD patients compared with control subjects. ANGPT2 expression was induced by interferon-γ and -ß and by hydrogen peroxide, but not by tumor necrosis factor. We conclude that upregulation of ANGPT2 expression in vastus lateralis muscles of COPD patients is likely due to oxidative stress and represents a positive adaptive response aimed at facilitating myogenesis and angiogenesis.


Assuntos
Angiopoietina-2/fisiologia , Músculo Esquelético/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/fisiologia , Angiopoietina-2/genética , Estudos de Casos e Controles , Citocinas/metabolismo , Diafragma/fisiopatologia , Feminino , Humanos , Masculino , Desenvolvimento Muscular/genética , Neovascularização Fisiológica/genética , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/genética , Músculo Quadríceps/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
9.
PLoS One ; 7(10): e47265, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056618

RESUMO

BACKGROUND: Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca(++) retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. CONCLUSION/SIGNIFICANCE: We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis and increased autophagy compared with the ventilatory muscles and that autophagy in skeletal muscles during sepsis is regulated in part through the NFκB transcription factor.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura
10.
Arterioscler Thromb Vasc Biol ; 32(7): 1707-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22628435

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) promotes leukocyte adhesion to endothelial cells (ECs). Angiopoietin-1 (Ang-1) inhibits this response. Nuclear receptor-77 (Nur77) is a proangiogenic nuclear receptor. In the present study, we assessed the influence of Ang-1 and VEGF on Nur77 expression in ECs, and evaluated its role in Ang-1/VEGF-mediated leukocyte adhesion. METHODS AND RESULTS: Expression of Nur77 was evaluated with real-time polymerase chain reaction and immunoblotting. Adhesion of leukocytes to ECs was monitored with inverted microscopy. Nur77 expression or activity was inhibited using adenoviruses expressing dominant-negative form of Nur77, retroviruses expressing Nur77 in the antisense direction, and small interfering RNA oligos. Both Ang-1 and VEGF induce Nur77 expression, by >5- and 30-fold, respectively. When combined, Ang-1 potentiates VEGF-induced Nur77 expression. Ang-1 induces Nur77 through the phosphoinositide 3-kinase and extracellular signal-regulated protein kinase 1/2 pathways. VEGF induces Nur77 expression through the protein kinase D/histone deacetylase 7/myocyte enhancer factor 2 and extracellular signal-regulated protein kinase 1/2 pathways. VEGF induces nuclear factor-kappaB transcription factor, vascular cell adhesion molecule-1, and E-selectin expressions, and promotes leukocyte adhesion to ECs. Ang-1 inhibits these responses. This inhibitory effect of Ang-1 disappears when Nur77 expression is disrupted, restoring the inductive effects of VEGF on adhesion molecule expression, and increased leukocyte adhesion to ECs. CONCLUSIONS: Nur77 promotes anti-inflammatory effects of Ang-1, and functions as a negative feedback inhibitor of VEGF-induced EC activation.


Assuntos
Angiopoietina-1/farmacologia , Células Endoteliais/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/fisiologia , Histona Desacetilases/metabolismo , Humanos , Quinase I-kappa B/genética , Leucócitos/fisiologia , NF-kappa B/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Canais de Cátion TRPP/metabolismo , Células U937 , Molécula 1 de Adesão de Célula Vascular/genética
11.
PLoS One ; 6(7): e22882, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829546

RESUMO

BACKGROUND: Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed. METHODOLOGY/PRINCIPAL FINDINGS: Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H(2)O(2), but not by TNFα, IL1ß or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation. CONCLUSION/SIGNIFICANCE: Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results suggest that muscle-derived ANGPT2 production may play a positive role in skeletal muscle fiber repair.


Assuntos
Angiopoietina-2/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Animais , Apoptose , Biomarcadores/metabolismo , Western Blotting , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Oxidantes/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo
12.
Am J Respir Crit Care Med ; 182(11): 1377-86, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20639440

RESUMO

RATIONALE: Controlled mechanical ventilation (CMV) results in atrophy of the human diaphragm. The autophagy-lysosome pathway (ALP) contributes to skeletal muscle proteolysis, but its contribution to diaphragmatic protein degradation in mechanically ventilated patients is unknown. OBJECTIVES: To evaluate the autophagy pathway responses to CMV in the diaphragm and limb muscles of humans and to identify the roles of FOXO transcription factors in these responses. METHODS: Muscle biopsies were obtained from nine control subjects and nine brain-dead organ donors. Subjects were mechanically ventilated for 2 to 4 hours and 15 to 276 hours, respectively. Activation of the ubiquitin-proteasome system was detected by measuring mRNA expressions of Atrogin-1, MURF1, and protein expressions of UBC2, UBC4, and the α subunits of the 20S proteasome (MCP231). Activation of the ALP was detected by electron microscopy and by measuring the expressions of several autophagy-related genes. Total carbonyl content and HNE-protein adduct formation were measured to assess oxidative stress. Total AKT, phosphorylated and total FOXO1, and FOXO3A protein levels were also measured. MEASUREMENTS AND MAIN RESULTS: Prolonged CMV triggered activation of the ALP as measured by the appearance of autophagosomes in the diaphragm and increased expressions of autophagy-related genes, as compared with controls. Induction of autophagy was associated with increased protein oxidation and enhanced expression of the FOXO1 gene, but not the FOXO3A gene. CMV also triggered the inhibition of both AKT expression and FOXO1 phosphorylation. CONCLUSIONS: We propose that prolonged CMV causes diaphragm disuse, which, in turn, leads to activation of the ALP through oxidative stress and the induction of the FOXO1 transcription factor.


Assuntos
Autofagia , Diafragma/fisiopatologia , Respiração Artificial/efeitos adversos , Idoso , Western Blotting , Diafragma/metabolismo , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Am J Respir Crit Care Med ; 181(8): 797-805, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20110558

RESUMO

RATIONALE: Nicotinamide N-methyl transferase (NNMT) is highly expressed in quadriceps muscles of patients with chronic obstructive pulmonary disease (COPD). However, its expression in the diaphragm of these patients has not been assessed. The functional significance of NNMT induction in skeletal muscles of patients with COPD is also unknown. OBJECTIVES: (1) To compare NNMT expressions in the diaphragm and quadriceps muscles of patients with COPD. (2) To identify the influence of proinflammatory cytokines on NNMT expression. (3) To assess the influence of NNMT on indices of myogenesis (satellite cell migration and proliferation) and the defense against oxidative stress. METHODS: Costal diaphragm muscle biopsies were acquired from 13 patients with moderate and severe COPD and 8 control subjects. Quadriceps muscle biopsies were obtained from 12 patients with COPD and 14 control subjects. MEASUREMENTS AND MAIN RESULTS: NNMT expressions were significantly elevated in the diaphragm and quadriceps muscles of patients with COPD; however, the relative induction of NNMT expression was greater in the quadriceps muscle (10-fold) than it was in the diaphragm (2-fold). NNMT expressions correlated negatively with the severity of COPD and limb muscle wasting. In skeletal myoblasts, NNMT expression was significantly induced by IL-6, transforming growth factor beta, and tumor necrosis factor-alpha. Overexpression of NNMT in myoblasts triggered a significant increase in proliferation and migration, but had no influence on cell death. Carbonyl formation, induced by exposing myoblasts to H(2)O(2), was significantly attenuated when NNMT was overexpressed. CONCLUSIONS: Up-regulation of NNMT expression in the skeletal muscles of patients with COPD may represent an adaptive response designed to improve myogenesis and defend against oxidative stress.


Assuntos
Expressão Gênica , Músculo Esquelético/enzimologia , Nicotinamida N-Metiltransferase/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Animais , Biópsia , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Diafragma/enzimologia , Feminino , Humanos , Immunoblotting , Masculino , Camundongos , Desenvolvimento Muscular , Estresse Oxidativo , Músculo Quadríceps/enzimologia , Índice de Gravidade de Doença
14.
Arterioscler Thromb Vasc Biol ; 29(2): 209-16, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19112164

RESUMO

OBJECTIVE: Angiopoietin-1 (Ang-1) is an important regulator of angiogenesis in endothelial cells. It promotes migration, proliferation, and differentiation of cells, although the regulating factors involved in these processes remain unclear. In this study, we evaluated the contribution of the transcription factor early growth response-1 (Egr-1) to Ang-1-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS: Expression of Egr-1 was evaluated with real-time PCR and immunoblotting, whereas Egr-1 DNA binding activity was monitored with electrophoretic mobility shift assays. Cell migration was measured with wound healing and Boyden chamber assays, whereas cell proliferation and differentiation of cells into capillary-like tube structures were monitored with cell counting, BrdU incorporation and Matrigels. To selectively inhibit Egr-1 expression, we used both siRNA oligonucleotides and specific DNAzymes. Egr-1 mRNA expression rose approximately 9-fold within 2 hours of Ang-1 exposure and declined thereafter. Upregulation of Egr-1 expression was accompanied by an increase in nuclear mobilization and augmented DNA binding. These processes were mediated through the Erk1/2, PI-3 kinase/AKT, and mTOR pathways. Knockdown of Egr-1 expression completely abrogated Ang-1-induced endothelial migration and significantly reduced proliferation and capillary-like tube formation of HUVECs that overexpress Ang-1. CONCLUSIONS: Ang-1 triggers significant and transient induction of Egr-1, and Egr-1 contributes to Ang-1-induced endothelial cell migration and proliferation.


Assuntos
Angiopoietina-1/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Células Cultivadas , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Células Endoteliais/enzimologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Tempo , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
COPD ; 5(2): 75-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18415806

RESUMO

Peripheral muscle wasting is a feature of chronic obstructive pulmonary disease (COPD). Potent therapeutic strategies are needed to improve peripheral muscle mass in these patients. We hypothesized that the evaluation of the mRNA expression profile of quadriceps muscle could be useful in identifying key biochemical pathways involved in the wasting process. We monitored mRNA expression profile of quadriceps muscle in four patients with COPD with muscle atrophy (age: 71.3 +/- 2.1 years, mean SD; FEV(1) 28.3 +/- 10.8 % predicted) and four control subjects (age: 66.5 +/- 1.3 years) using HuU95v2 gene chips. Fifty-seven mRNAs transcripts (0.5%) were found to be differentially expressed in muscles of COPD patients (i.e., p < 0.01). Among them, forkhead box O -1 and -3 and insulin-like growth factor-1 expressions being significantly elevated in COPD subjects. Concomitantly, a significant reduction in mRNA expression of two myofilament proteins was observed. Energy production appears to be impaired as indicated by the significant rise in nicotinamide N-methyltransferase mRNA expression. This study provides for the first time evidence that genes are selectively expressed in limb muscles of COPD patients and further research need to focus on their functional roles in the pathogenesis of muscle dysfunction.


Assuntos
Atrofia Muscular/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Músculo Quadríceps/metabolismo , RNA Mensageiro/metabolismo , Idoso , Volume Expiratório Forçado , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Atrofia Muscular/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Capacidade Vital
16.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L955-63, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18310225

RESUMO

Angiopoietins are ligands for Tie-2 receptors and play important roles in angiogenesis and inflammation. While angiopoietin-1 (Ang-1) inhibits inflammatory responses, angiopoietin-2 (Ang-2) promotes cytokine production and vascular leakage. In this study, we evaluated in vivo and in vitro effects of Escherichia coli lipopolysaccharides (LPS) on angiopoietin expression. Wild-type C57/BL6 mice were injected with saline (control) or E. coli LPS (20 mg/ml ip) and killed 6, 12, and 24 h later. The diaphragm, lung, and liver were excised and assayed for mRNA and protein expression of Ang-1, Ang-2, and Tie-2 protein and tyrosine phosphorylation. LPS injection elicited a severalfold rise in Ang-2 mRNA and protein levels in the three organs. By comparison, both Ang-1 and Tie-2 levels in the diaphragm, liver, and lung were significantly attenuated by LPS administration. In addition, Tie-2 tyrosine phosphorylation in the lung was significantly reduced in response to LPS injection. In vitro exposure to E. coli LPS elicited cell-specific changes in Ang-1 expression, with significant induction in Ang-1 expression being observed in cultured human epithelial cells, whereas significant attenuation of Ang-1 expression was observed in response to E. coli LPS exposure in primary human skeletal myoblasts. In both cell types, E. coli LPS elicited substantial induction of Ang-2 mRNA, a response that was mediated in part through NF-kappaB. We conclude that in vivo endotoxemia triggers functional inhibition of the Ang-1/Tie-2 receptor pathway by reducing Ang-1 and Tie-2 expression and inducing Ang-2 levels and that this response may contribute to enhanced vascular leakage in sepsis.


Assuntos
Angiopoietina-1/genética , Angiopoietina-2/genética , Lipopolissacarídeos/farmacologia , Pneumonia/fisiopatologia , Mucosa Respiratória/fisiologia , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/fisiologia , NF-kappa B/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Receptor TIE-2/metabolismo , Mucosa Respiratória/citologia , Sepse/imunologia , Sepse/metabolismo , Sepse/fisiopatologia
17.
Antioxid Redox Signal ; 10(3): 559-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18092937

RESUMO

Skeletal muscle precursor cells are adult stem cells located among muscle fibers. Proliferation, migration, and subsequent differentiation of these cells are critical steps in the repair of muscle injury. We document in this study the roles and mechanisms through which the NAPDH oxidase complex regulates muscle precursor cell proliferation. The NADPH oxidase subunits Nox2, Nox4, p22(phox), p47(phox), and p67(phox) were detected in primary human and murine skeletal muscle precursor cells. In human muscle precursor cells, NADPH oxidase-fusion proteins were localized in the cytosolic and membrane compartments of the cell, except for p47(phox), which was detected in the nucleus. In proliferating subconfluent precursor cells, both Nox2 and Nox4 contributed to O(2)(-) production. However, Nox4 expression was significantly attenuated in differentiated myotubes. Proliferation of precursor cells was significantly reduced by antioxidants (N-acetylcysteine and apocynin), inhibition of p22(phox) expression by using siRNA oligonucleotides, and reduction of Nox4 and p47(phox) activities with dominant-negative vectors and siRNA oligonucleotides resulted in attenuation of activities of the Erk1/2, PI-3 kinase/AKT and NFkappaB pathways and significant reduction in cyclin D1 levels. We conclude that NADPH oxidase is expressed in skeletal muscle precursor cells and that its activity plays an important role in promoting proliferation of these cells.


Assuntos
Proliferação de Células , Músculo Esquelético/citologia , NADPH Oxidases/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Primers do DNA , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Músculo Esquelético/enzimologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Int J Chron Obstruct Pulmon Dis ; 3(4): 637-58, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19281080

RESUMO

Chronic obstructive pulmonary disease (COPD) is a debilitating disease characterized by inflammation-induced airflow limitation and parenchymal destruction. In addition to pulmonary manifestations, patients with COPD develop systemic problems, including skeletal muscle and other organ-specific dysfunctions, nutritional abnormalities, weight loss, and adverse psychological responses. Patients with COPD often complain of dyspnea on exertion, reduced exercise capacity, and develop a progressive decline in lung function with increasing age. These symptoms have been attributed to increases in the work of breathing and in impairments in gas exchange that result from airflow limitation and dynamic hyperinflation. However, there is mounting evidence to suggest that skeletal muscle dysfunction, independent of lung function, contributes significantly to reduced exercise capacity and poor quality of life in these patients. Limb and ventilatory skeletal muscle dysfunction in COPD patients has been attributed to a myriad of factors, including the presence of low grade systemic inflammatory processes, nutritional depletion, corticosteroid medications, chronic inactivity, age, hypoxemia, smoking, oxidative and nitrosative stresses, protein degradation and changes in vascular density. This review briefly summarizes the contribution of these factors to overall skeletal muscle dysfunction in patients with COPD, with particular attention paid to the latest advances in the field.


Assuntos
Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculos Respiratórios/fisiopatologia , Animais , Tolerância ao Exercício , Humanos , Fadiga Muscular , Fibras Musculares Esqueléticas/patologia , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Ventilação Pulmonar , Qualidade de Vida , Músculos Respiratórios/metabolismo , Músculos Respiratórios/patologia , Fatores de Risco , Trabalho Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA