Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 164: 112311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36737905

RESUMO

This work reports the impact of locust bean gum (LBG) in the continuous phase of plant-based proteins, i.e. quinoa protein (QPI) and pea protein isolates (PPI). Experimental measurements such as confocal microscopy, rheological analysis and water mobility via nuclear magnetic resonance (nmr) spin-spin relaxation time (T2) were carried out. The influence of LBG on the rheological properties of QPI and PPI is consistent with an exchange-based nmr interpretation of T2 for biopolymer and water. Addition of LBG increased the viscoelastic properties (storage and loss modulus) and shear viscosities of the mixtures. LBG interacted with both plant proteins, resulting in the formation of more dense protein networks and protein coacervates. A stronger interaction between the PPI and LBG was observed, resulting in higher shear viscosities with lower water mobility as compared to QPI:LBG formulations. Results indicated that the interaction between the protein and polysaccharide played a significant role in the microstructure, its rheological properties and consequently water mobility.


Assuntos
Chenopodium quinoa , Pisum sativum , Proteínas de Plantas , Água/química
2.
Microb Biotechnol ; 15(5): 1404-1421, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393728

RESUMO

Ethical, environmental and health concerns around dairy products are driving a fast-growing industry for plant-based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant-based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant-based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant-based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant-based cheeses and yoghurts is also discussed.


Assuntos
Queijo , Produtos Fermentados do Leite , Lactobacillales , Queijo/microbiologia , Laticínios , Fermentação , Aromatizantes/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Iogurte/microbiologia
3.
Biophys J ; 116(10): 1887-1897, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053263

RESUMO

Allosteric regulation plays an important role in the control of metabolic flux in biosynthetic pathways. In microorganisms, many enzymes in these pathways adopt different strategies of allostery to allow the tuning of their activities in response to metabolic demand. Thus, it is important to uncover the mechanism of allosteric signal transmission to fully comprehend the complex control of enzyme function and its evolution. ATP-phosphoribosyltransferase (ATP-PRT), as the first enzyme in the histidine biosynthetic pathway, is allosterically regulated by histidine and offers a good platform for the study of allostery. Two forms of ATP-PRT, namely long and short forms, were discovered that show different arrangements of their regulatory machinery. Crystal structures of the long-form ATP-PRT have revealed overall conformational changes in the inhibited state, but the observed changes in the active state are quite subtle, making the elucidation of its allosteric mechanism difficult. Here, we combine computational methods (ligand docking, quantum mechanics/molecular mechanics optimization, and molecular dynamic simulations) with experimental studies to probe the signal transmission between remote allosteric and active sites. Our results reveal that distinct conformational ensembles of the catalytic domain with different dynamic properties exist in the ligand-free and histidine-bound enzymes. These ensembles display different capabilities in supporting the catalytic and allosteric function of ATP-PRT. The findings give insight into the underlying mechanism of allostery and allow us to propose that the hinge twisting within the catalytic domain is the key for both enhancement of catalysis and provision of regulation in ATP-PRT enzymes.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Biocatálise , Histidina/biossíntese , Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular
4.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208762

RESUMO

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
ACS Chem Biol ; 12(10): 2662-2670, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28872824

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first step in histidine biosynthesis, a pathway essential to microorganisms and a validated target for antimicrobial drug design. The ATP-PRT enzyme catalyzes the reversible substitution reaction between phosphoribosyl pyrophosphate and ATP. The enzyme exists in two structurally distinct forms, a short- and a long-form enzyme. These forms share a catalytic core dimer but bear completely different allosteric domains and thus distinct quaternary assemblies. Understanding enzymatic transition states can provide essential information on the reaction mechanisms and insight into how differences in domain structure influence the reaction chemistry, as well as providing a template for inhibitor design. In this study, the transition state structures for ATP-PRT enzymes from Campylobacter jejuni and Mycobacterium tuberculosis (long-form enzymes) and from Lactococcus lactis (short-form) were determined and compared. Intrinsic kinetic isotope effects (KIEs) were obtained at reaction sensitive positions for the reverse reaction using phosphonoacetic acid, an alternative substrate to the natural substrate pyrophosphate. The experimental KIEs demonstrated mechanistic similarities between the three enzymes and provided experimental boundaries for quantum chemical calculations to characterize the transition states. Predicted transition state structures support a dissociative reaction mechanism with a DN*AN‡ transition state. Weak interactions from the incoming nucleophile and a fully dissociated ATP adenine are predicted regardless of the difference in overall structure and quaternary assembly. These studies establish that despite significant differences in the quaternary assembly and regulatory machinery between ATP-PRT enzymes from different sources, the reaction chemistry and catalytic mechanism are conserved.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Bactérias/enzimologia , ATP Fosforribosiltransferase/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Transdução de Sinais
6.
Protein Sci ; 25(8): 1492-506, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191057

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/química , Histidina/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
7.
J Org Chem ; 76(18): 7301-15, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21793528

RESUMO

With the aim to find an efficient synthetic procedure for the construction of 2,3-diamino-2,3-dideoxy-ß-D-mannuronic acids, we evaluated three mannosyl donors: (S)-phenyl 4,6-di-O-acetyl-2,3-diazido mannopyranoside, (S)-phenyl 2,3-diazido-4,6-O-benzylidene mannopyranoside, and (S)-phenyl 2,3-diazido mannopyranosyl methyl uronate. The first two mannosylating agents are rather unselective or slightly α-selective in their condensation with three different acceptors. The mannuronic acid donor on the other hand reliably provides the desired ß-mannosidic linkage. A mechanistic rationale is put forward to account for the different behavior of the three donor types. Suitably protected 2,3-diazido mannuronic acids were employed to construct the all-cis-linked tetrasaccharide repeating unit of the capsular polysaccharide of Bacillus stearothermophilus , featuring two 2,3-diacetamido-2,3-dideoxy-ß-D-mannuronic acids.


Assuntos
Ácidos Urônicos/síntese química , Geobacillus stearothermophilus/química , Manose/química , Polissacarídeos/química , Estereoisomerismo , Ácidos Urônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA