Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625987

RESUMO

Actinobacillus succinogenes, a Gram-negative facultative anaerobe, exhibits the native capacity to convert pentose and hexose sugars to succinic acid (SA) with high yield as a tricarboxylic acid (TCA) cycle intermediate. In addition, A. succinogenes is capnophilic, incorporating CO2 into SA, making this organism an ideal candidate host for conversion of lignocellulosic sugars and CO2 to an emerging commodity bioproduct sourced from renewable feedstocks. In this work, we report the development of facile metabolic engineering capabilities in A. succinogenes, enabling examination of SA flux determinants via knockout of the primary competing pathways-namely, acetate and formate production-and overexpression of the key enzymes in the reductive branch of the TCA cycle leading to SA. Batch fermentation experiments with the wild-type and engineered strains using pentose-rich sugar streams demonstrate that the overexpression of the SA biosynthetic machinery (in particular, the enzyme malate dehydrogenase) enhances flux to SA. Additionally, removal of competitive carbon pathways leads to higher-purity SA but also triggers the generation of by-products not previously described from this organism (e.g., lactic acid). The resultant engineered strains also lend insight into energetic and redox balance and elucidate mechanisms governing organic acid biosynthesis in this important natural SA-producing microbe.IMPORTANCE Succinic acid production from lignocellulosic residues is a potential route for enhancing the economic feasibility of modern biorefineries. Here, we employ facile genetic tools to systematically manipulate competing acid production pathways and overexpress the succinic acid-producing machinery in Actinobacillus succinogenes Furthermore, the resulting strains are evaluated via fermentation on relevant pentose-rich sugar streams representative of those from corn stover. Overall, this work demonstrates genetic modifications that can lead to succinic acid production improvements and identifies key flux determinants and new bottlenecks and energetic needs when removing by-product pathways in A. succinogenes metabolism.


Assuntos
Actinobacillus/genética , Actinobacillus/metabolismo , Ácido Succínico/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Formiatos/metabolismo , Glucose/metabolismo , Engenharia Metabólica
2.
Biotechnol Biofuels ; 9(1): 189, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594916

RESUMO

BACKGROUND: To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. RESULTS: 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. CONCLUSIONS: This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.

3.
Bioresour Technol ; 214: 558-566, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179951

RESUMO

The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.


Assuntos
Actinobacillus/metabolismo , Lignina/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/efeitos dos fármacos , Técnicas de Cultura Celular por Lotes , Biomassa , Fermentação/efeitos dos fármacos , Glucose/farmacologia , Hidrólise , Redes e Vias Metabólicas/efeitos dos fármacos , Ácidos Sulfúricos/farmacologia , Zea mays/química
4.
Biotechnol Biofuels ; 9: 28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839591

RESUMO

BACKGROUND: Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. However, SA production from biomass-derived hydrolysates has not yet been fully explored or developed. RESULTS: Here, we employ Actinobacillus succinogenes 130Z to produce succinate in batch fermentations from various substrates including (1) pure sugars to quantify substrate inhibition, (2) from mock hydrolysates similar to those from DAP containing single putative inhibitors, and (3) using the hydrolysate derived from two pilot-scale pretreatments: first, a mild alkaline wash (deacetylation) followed by DAP, and secondly a single DAP step, both with corn stover. These latter streams are both rich in xylose and contain different levels of inhibitors such as acetate, sugar dehydration products (furfural, 5-hydroxymethylfurfural), and lignin-derived products (ferulate, p-coumarate). In batch fermentations, we quantify succinate and co-product (acetate and formate) titers as well as succinate yields and productivities. We demonstrate yields of 0.74 g succinate/g sugars and 42.8 g/L succinate from deacetylated DAP hydrolysate, achieving maximum productivities of up to 1.27 g/L-h. Moreover, A. succinogenes is shown to detoxify furfural via reduction to furfuryl alcohol, although an initial lag in succinate production is observed when furans are present. Acetate seems to be the main inhibitor for this bacterium present in biomass hydrolysates. CONCLUSION: Overall, these results demonstrate that biomass-derived, xylose-enriched hydrolysates result in similar yields and titers but lower productivities compared to clean sugar streams, which can likely be improved via fermentation process developments and metabolic engineering. Overall, this study comprehensively examines the behavior of A. succinogenes on xylose-enriched hydrolysates on an industrially relevant, lignocellulosic feedstock, which will pave the way for future work toward eventual SA production in an integrated biorefinery.

5.
Biotechnol Biofuels ; 8: 181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581168

RESUMO

BACKGROUND: Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported. RESULTS: Actinobacillus succinogenes 130Z was immobilised in a custom continuous fermentation setup to produce SA on the xylose-enriched fraction of a non-detoxified, xylose-rich corn stover hydrolysate stream produced from deacetylation and dilute acid pretreatment. Effective biofilm attachment, which serves as a natural cell retention strategy to increase cell densities, productivities and resistance to toxicity, was accomplished by means of a novel agitator fitting. A maximum SA titre, yield and productivity of 39.6 g L(-1), 0.78 g g(-1) and 1.77 g L(-1) h(-1) were achieved, respectively. Steady states were obtained at dilution rates of 0.02, 0.03, 0.04, and 0.05 h(-1) and the stirred biofilm reactor was stable over prolonged periods of operation with a combined fermentation time of 1550 h. Furthermore, it was found that a gradual increase in the dilution rate was required to facilitate adaptation of the culture to the hydrolysate, suggesting a strong evolutionary response to the toxic compounds in the hydrolysate. Moreover, the two primary suspected fermentation inhibitors, furfural and HMF, were metabolised during fermentation with the concentration of each remaining at zero across all steady states. CONCLUSIONS: The results demonstrate that immobilised A. succinogenes has the potential for effective conversion of an industrially relevant, biomass-derived feed stream to succinic acid. Furthermore, due to the attractive yields, productivities and titres achieved in this study, the process has the potential to serve as a means for value-added chemical manufacturing in the integrated biorefinery.

6.
Biotechnol Biofuels ; 8: 55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834640

RESUMO

BACKGROUND: Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. RESULTS: A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several 'sub-strains' were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3's improved performance. CONCLUSION: We have adapted/evolved Z. mobilis strain 8b for enhanced tolerance to the toxic compounds present in corn stover hydrolysates. The adapted strain SS3 has higher xylose utilization rate and produce more ethanol than the parent strain. We have identified transcriptional changes which may be responsible for these phenotypes, providing foundations for future research directions in improving Z. mobilis as biocatalysts for the production of ethanol or other fuel precursors.

7.
Biotechnol Biofuels ; 7(1): 19, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24485299

RESUMO

BACKGROUND: Numerous attempts have been made to improve xylose utilization in Z. mobilis including adaptive approaches. However, no one has yet found a way to overcome the reduced xylose utilization observed in fermentations carried out in the presence of glucose as well as the inhibitory compounds found within pretreated and saccharified biomass. Our goal was to generate Z. mobilis strains that are more robust than the wildtype strain with increased productivity in fermenting the glucose and xylose present in PCS. Through adaptation in the presence of 2-deoxyglucose, we have generated Zymomonas mobilis strain #7, which is better suited to utilizing xylose in pretreated corn stover (PCS) fermentations in the presence of both glucose and model inhibitory compounds of acetate and furfural. Strain #7 over performed the parent strain 8b both on simultaneous saccharification and fermentation (SFF) of PCS and fermentation of saccharified PCS slurry. At 65% neutralized PCS liquor level, strain #7 used 86% of the xylose present in the liquor while strain 8b was not able to ferment the liquor under similar conditions. Similarly, under SSF process conditions with 20% total solids loading of PCS, strain #7 used more than 50% of the xylose present, while strain 8b did not utilize any xylose under this condition. We have further identified genetic alterations in strain #7 in relation to the parental strain 8b that may be responsible for these phenotypic enhancements. RESULTS: We performed an extended lab-directed evolution of Z. mobilis strain 8b in the presence of acetate and a non-hydrolyzable glucose analogue 2-deoxyglucose. Following the adaptation, we identified and characterized numerous candidate strains and found a dramatic increase in xylose usage not only in shake flask, but also in a controlled PCS fermentation. We re-sequenced the genomes of evolved strains to identify genetic alterations responsible for these improved phenotypes, and identified two mutations that may be key to the improved xylose usage in these strains. CONCLUSION: We have generated Z. mobilis strain #7, which can ferment xylose efficiently in the presence of toxins present in pretreated corn stover. Genetic alterations responsible for the improvement have been identified.

8.
Biotechnol Biofuels ; 6(1): 99, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837621

RESUMO

BACKGROUND: During the pretreatment of biomass feedstocks and subsequent conditioning prior to saccharification, many toxic compounds are produced or introduced which inhibit microbial growth and in many cases, production of ethanol. An understanding of the toxic effects of compounds found in hydrolysate is critical to improving sugar utilization and ethanol yields in the fermentation process. In this study, we established a useful tool for surveying hydrolysate toxicity by measuring growth rates in the presence of toxic compounds, and examined the effects of selected model inhibitors of aldehydes, organic and inorganic acids (along with various cations), and alcohols on growth of Zymomonas mobilis 8b (a ZM4 derivative) using glucose or xylose as the carbon source. RESULTS: Toxicity strongly correlated to hydrophobicity in Z. mobilis, which has been observed in Escherichia coli and Saccharomyces cerevisiae for aldehydes and with some exceptions, organic acids. We observed Z. mobilis 8b to be more tolerant to organic acids than previously reported, although the carbon source and growth conditions play a role in tolerance. Growth in xylose was profoundly inhibited by monocarboxylic organic acids compared to growth in glucose, whereas dicarboxylic acids demonstrated little or no effects on growth rate in either substrate. Furthermore, cations can be ranked in order of their toxicity, Ca++ > > Na+ > NH4+ > K+. HMF (5-hydroxymethylfurfural), furfural and acetate, which were observed to contribute to inhibition of Z. mobilis growth in dilute acid pretreated corn stover hydrolysate, do not interact in a synergistic manner in combination. We provide further evidence that Z. mobilis 8b is capable of converting the aldehydes furfural, vanillin, 4-hydroxybenzaldehyde and to some extent syringaldehyde to their alcohol forms (furfuryl, vanillyl, 4-hydroxybenzyl and syringyl alcohol) during fermentation. CONCLUSIONS: Several key findings in this report provide a mechanism for predicting toxic contributions of inhibitory components of hydrolysate and provide guidance for potential process development, along with potential future strain improvement and tolerance strategies.

9.
Methods Mol Biol ; 908: 169-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22843399

RESUMO

Although a poor indicator of how a cellulase preparation will perform on biomass, the filter paper unit (FPU) still finds wide use in the literature as an apparent measure of performance efficacy. In actuality, the assessment of commercial enzyme preparation performance in terms of biomass conversion or solubilization of insoluble polysaccharides is largely dependent on the substrate composition, which cannot be easily standardized. Commercial cellulase preparations are evaluated based upon their performance or specific activity. The ability to compare commercial enzyme preparation efficacy across a wide variety of different preparations requires defining the amount of enzyme protein required in milligrams per gram of cellulose to achieve a targeted level of cellulose hydrolysis in a specified timeframe. Since biomass substrates are highly variable, reproducible and accurate protein determination is as important as performance testing to be able to rank order the effectiveness of diverse preparations. This chapter describes a protocol that overcomes many of the difficulties encountered with determining the protein concentration in commercial cellulase preparations.


Assuntos
Biomassa , Biotecnologia/métodos , Celulases/metabolismo , Celulose/metabolismo , Proteínas/isolamento & purificação , Biotecnologia/instrumentação , Cromatografia/métodos
10.
Biotechnol Biofuels ; 4: 29, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21899748

RESUMO

BACKGROUND: Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. RESULTS: Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. CONCLUSIONS: This study provides extensive information about the performance of four precommercial cellulase preparations. Though test conditions were not necessarily optimal for some of the enzymes, all were able to effectively saccharify PCS cellulose. Large differences in the estimated enzyme dosage requirements depending on the assay used to measure protein concentration highlight the need for better consensus methods to quantify enzyme protein.

11.
Biotechnol Prog ; 26(5): 1245-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20945482

RESUMO

In process integration studies of the biomass-to-ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.


Assuntos
Biotecnologia/economia , Biotecnologia/métodos , Zea mays/metabolismo , Biomassa , Celulase/metabolismo , Celulose/metabolismo , Cromatografia Líquida de Alta Pressão , Etanol/metabolismo , Fermentação/fisiologia
12.
Biotechnol Bioeng ; 105(5): 992-6, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19998277

RESUMO

Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.


Assuntos
Biomassa , Etanol/metabolismo , Amido/metabolismo , Ácidos Sulfúricos/farmacologia , Zea mays/efeitos dos fármacos , Zymomonas/metabolismo , Conservação dos Recursos Naturais/métodos , Fermentação
13.
Biotechnol Lett ; 26(4): 321-5, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15055769

RESUMO

Efficient conversion of lignocellulosic biomass requires biocatalysts able to tolerate inhibitors produced by many pretreatment processes. Recombinant Zymomonas mobilis 8b, a recently developed integrant of Zymomonas mobilis 31821(pZB5), tolerated acetic acid up to 16 g l(-1) and achieved 82%-87% (w/w) ethanol yields from pure glucose/xylose solutions at pH 6 and temperatures of 30 degrees C and 37 degrees C. An ethanol yield of 85% (w/w) was achieved on glucose/xylose from hydrolysate produced by dilute sulfuric acid pretreatment of corn stover after an overliming' process was used to improve hydrolysate fermentability.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Zea mays/metabolismo , Zymomonas/metabolismo , Acetatos/química , Ácido Acético/química , Biomassa , Celulose/química , Meios de Cultura/metabolismo , Etanol/química , Etanol/farmacologia , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Lignina/química , Piruvato Descarboxilase/química , Proteínas Recombinantes/química , Ácidos Sulfúricos/farmacologia , Temperatura , Fatores de Tempo , Xilose/metabolismo
14.
Appl Biochem Biotechnol ; 98-100: 885-98, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12018310

RESUMO

Cofermentation of glucose, xylose, and arabinose is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. We have previously developed a plasmid-bearing strain of Zymomonas mobilis (206C[pZB301]) capable of cofermenting glucose, xylose, and arabinose to ethanol. To enhance its genetic stability, several genomic DNA-integrated strains of Z. mobilis have been developed through the insertion of all seven genes necessay for xylose and arabinose fermentation into the Zymomonas genome. From all the integrants developed, four were selected for further evaluation. The integrants were tested for stability by repeated transfer in a nonselective medium (containing only glucose). Based on the stability test, one of the integrants (AX101) was selected for further evaluation. A series of batch and continuous fermentations was designed to evaluate the cofermentation of glucose, xylose, and L-arabinose with the strain AX101. The pH range of study was 4.5, 5.0, and 5.5 at 30 degrees C. The cofermentation process yield was about 84%, which is about the same as that of plasmid-bearing strain 206C(pZB301). Although cofermentation of all three sugars was achieved, there was a preferential order of sugar utilization: glucose first, then xylose, and arabinose last.


Assuntos
Arabinose/metabolismo , DNA Bacteriano/genética , Etanol/metabolismo , Glucose/metabolismo , Xilose/metabolismo , Zymomonas/fisiologia , Biotecnologia/instrumentação , Biotecnologia/métodos , Desenho de Equipamento , Fermentação , Cinética , Especificidade da Espécie , Zymomonas/genética , Zymomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA