Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; : 153869, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909937

RESUMO

Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3P and miRNA 325-3P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3P and miRNA 325-3P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3P and miRNA 325-3P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.

2.
Toxicol Appl Pharmacol ; 484: 116869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382713

RESUMO

This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1ß (IL-1ß), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1ß, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.


Assuntos
Quitosana , Curcumina , Piretrinas , Piroptose , Animais , Masculino , Ratos , Caspase 1 , Caspase 3 , Caspase 8 , Curcumina/farmacologia , Rim , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piretrinas/toxicidade , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa
3.
Food Chem Toxicol ; 186: 114520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369055

RESUMO

Fenpropathrin (FN), a pyrethroid has been linked to potential pulmonary toxic effects to humans via incident direct or indirect ingestion. Thus, we aimed to the investigate the underlying mechanisms of lung toxicity upon exposure to FN in the rat model, besides studying whether curcumin (CCM) and curcumin-loaded chitosan nanoformulation (CCM-Chs) can mitigate FN-induced lung damage. Six distinct groups, namely, control, CCM, CCM-Chs, FN, and CCM + FN, CCM-Chs + FN were assigned separately. The inflammatory, apoptotic, and oxidative stress states, histological, immunohistochemical, and immunofluorescence examination of different markers within the pulmonary tissue were applied. The results revealed that the FN-induced tissue damage might be caused by the oxidative stress induction and depressed antioxidant glutathione system in the lungs of rats. Furthermore, FN upregulated the expression of genes related to inflammation, and pyroptosis, and elevated the immunoreactivity of Caspase-3, tumor necrosis factor-α, vimentin, and 4-Hydroxynonenal in pulmonary tissues of FN-exposed rats compared to the control. CCM and CCM-Chs mitigated the FN-induced disturbances, while remarkably, CCM-Chs showed better potency than CCM in mitigating the FN-induced toxicity. In conclusion, this study shows the prominent preventive ability of CCM-Chs more than CCM in combatting the pulmonary toxicity induced by FN. This may be beneficial in developing therapeutic and preventive strategies against FN-induced pulmonary toxicity.


Assuntos
Curcumina , Piretrinas , Humanos , Ratos , Animais , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo , Piretrinas/toxicidade , Apoptose , Corantes , Pulmão
4.
Toxicology ; 497-498: 153629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37704175

RESUMO

Nicotine-induced cardiac tissue damage is a concern for cancer patients, but the exact pathogenesis from nicotine oral exposure is unclear. This study was designed to investigate the impact of nicotine and Chlorella vulgaris (Ch. V) on cardiac glutathione homeostasis, inflammatory response, cardiac damage markers, apoptotic proteins and histopathological findings in an experimentally transplantable neoplasm mouse model (Ehrlich ascites carcinoma; EAC). In the in-vivo experiment, the female Swiss mice were divided into four groups: control, Ch.V (100 mg/kg), Nicotine (100 µg/ml/kg), and a combination group ( Nocotine+ Ch.V) for 40 days. Furthermore, in this study,the effects of C. vulgaris components on caspase-3, TNF-α, and IL-1ß activity were explored using Molecular Operating Environment (MOE) docking software to ensure its ability to counteract the toxic effects of nicotine. The results indicated that nicotine has induced significant (P < 0.001) cardiopathic alterations in EAC-bearing mice with changes in cardiac tissue enzymes. C. Vulgaris attenuated the nicotine-induced cardiac glutathione inhibition, suppressed the inflammatory response, exerted antiapoptotic effects, mitigated myocardial injury biomarkers, and repaired cellular and tissue damage. Moreover, the molecular docking results revealed the ability of C. vulgaris to bind with interleukin-1 receptor type 1 (IL1R1) and tumor necrosis factor receptor superfamily member 1 A (TNFRSF1A) in the mice tissues, ameliorating apoptosis and inflammatory processes associated with nicotine-induced cardiotoxicity. This study provides a model for understanding nicotine-induced myocardial injury during experimentally transplantable neoplasm. It highlights C. vulgaris as a beneficial food supplement for cancer patients exposed to nicotine orally.


Assuntos
Chlorella vulgaris , Neoplasias , Humanos , Feminino , Animais , Camundongos , Chlorella vulgaris/química , Nicotina/toxicidade , Simulação de Acoplamento Molecular , Glutationa
5.
Food Chem Toxicol ; 180: 114036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714448

RESUMO

In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1ß, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.

6.
Biol Trace Elem Res ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752374

RESUMO

Due to their distinctive properties, several eco-friendly metal oxide nanoparticles were assessed for their possible cardioprotective properties. Acrylamide (ACD), a pervasive chemical in food and the environment, has been linked to cardiac toxicity. Therefore, this study examined the probable protective effect of green synthesized zinc oxide nanoparticles (GS-ZNPs) against ACD-oral exposure-induced cardiac damage in rats. For 60 days, 40 male Sprague-Dawley rats were separated into four sets that orally administered distilled water, 10-mg GS-ZNP/kg b.w., 20-mg ACD/kg b.w., or GS-ZNP + ACD. Then, cardiac damage indicators comprising CPK, CK-MB, cTn, and LDH were assessed. Besides, cardiac tissues' architecture, oxidative stress indicators, and Zn content were evaluated. The mRNA expression of the ERS-related genes, including ATF3, ATF4, ATF6, XBP-1, CHOP, JNKs, and BiP, were determined. Moreover, ERS-dependent anti-apoptotic (BCL-2) and apoptotic (Caspase-3 and BAX) genes mRNA expression were analyzed. The results showed that GS-ZNP significantly alleviated the increased ACD-induced serum cardiac damage indicators, MDA tissue content, and histopathological changes. Furthermore, the ACD-induced reduction of antioxidants and Zn heart contents were significantly reestablished by GS-ZNP. Furthermore, the ACD-induced upregulation of the ERS-encoding genes and apoptotic genes was reversed by GS-ZNP. Besides, the ACD-induced BCL-2 downregulation was counteracted by GS-ZNP. Overall, GS-ZNP could be a biologically potent compound to alleviate ACD's cardiotoxic effects, possibly by controlling the ERS and apoptosis-related genes and antioxidant activity.

7.
Food Chem Toxicol ; 179: 113977, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532170

RESUMO

This study delves into the intricate exploration of potential toxic effects resulting from subchronic exposure to fenpropathrin (FNP) on the reproductive system of male SD rats. Adding to the novelty, our study undertakes a pioneering comparison of the effects of curcumin (CUR) and curcumin-encapsulated chitosan nanoparticles (CS.CUR.NPs) on these toxic effects. The study involved a cohort of sixty male SD rats (six groups): vehicle control, CUR, Cs.CUR.NPs, FNP, and two combination groups (FNP with CUR or Cs.CUR.NPs). The synthesized Cs.CUR.NPs nanoparticles underwent meticulous characterization using Fourier Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The findings revealed that FNP caused oxidative stress, sperm abnormalities, reduced motility and sperm count FNP decreased serum LH, FSH, 17-ß estradiol, and testosterone levels. FNP downregulated the mRNA expression of the spermatogenesis and steroidogenesis-related genes, While, downregulated hypothalamic KISS-1 and KISS-1r expression. Histopathological alterations were assessed and scored. Surprisingly, the treatment with CUR and Cs.CUR.NPs exhibited remarkable restorative effects on semen quality, sex hormone levels, antioxidant capacity, and mRNA expression of the targeted genes. Notably, Cs.CUR.NPs displayed superior properties when compared to CUR. Nevertheless, further research is imperative to evaluate their efficacy across various bodily tissues.


Assuntos
Quitosana , Curcumina , Nanopartículas , Piretrinas , Masculino , Ratos , Animais , Curcumina/farmacologia , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise do Sêmen , Estudos Prospectivos , Ratos Sprague-Dawley , Sêmen , Nanopartículas/química , Genômica , RNA Mensageiro
8.
Gene ; 883: 147670, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37516284

RESUMO

Non-alcoholic fatty liver (NAFL) is a prevalent hepatic disorder of global significance that can give rise to severe complications. This research endeavor delves into the potential of nano-liposomal formulated Lycopene (Lip-Lyco) in averting the development of obesity and insulin resistance, both of which are major underlying factors contributing to NAFL. The investigation further scrutinizes the impact of Lip-Lyco on intricate cellular pathways within the liver tissue of rats induced with NAFL, specifically focusing on the progression of steatosis and fibrosis. To establish an obesity-NAFL model, twenty rats were subjected to a high-fat diet (HFD) for a duration of twelve weeks, after which they received an oral treatment of Lip-Lyco (10mg/kg) for an additional eight weeks. Another group of sixteen non-obese rats were subjected to treatment with or without Lip-Lyco, serving as a control for comparison. Results: The rats on a hypercaloric diet had high body mass index (BMI) and insulin resistance, reflected in disturbed serum adipokines and lipid profiles. Oxidative stress, inflammation, and apoptosis were evident in hepatic tissue, and the autophagic process in hepatocytes was inhibited. Additionally, the hedgehog pathway was activated in the liver tissue of NAFL group. Lip-Lyco was found to counteract all these aspects of NAFL pathogenesis. Lip-Lyco exhibited antioxidant, anti-inflammatory, hypoglycemic, antiapoptotic, autophagy-inducing, and Hedgehog signaling inhibitory effects. This study concludes that Lip-Lyco, a natural compound, has promising therapeutic potential in combating NAFLdisease. However, more experimental and clinical studies are required to confirm the effectiveness of lycopene in treating NAFLdisease.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Licopeno/farmacologia , Licopeno/uso terapêutico , Proteínas Hedgehog/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Dieta Hiperlipídica/efeitos adversos , Genômica , Autofagia
9.
Antioxidants (Basel) ; 12(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37371950

RESUMO

In the advanced stages of type 2 diabetes mellitus (T2DM), diabetic liver damage is a common complication that can devastate a patient's quality of life. The present study investigated the ability of liposomal berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM) and the possible pathways by which it does so. Liver tissue microarchitectures and immunohistochemical staining were applied during the study. The rats were divided into a control non-diabetic group and four diabetic groups, which are the T2DM, T2DM-Lip-BBR (10 mg/kg b.wt), T2DM-Vildagliptin (Vild) (10 mg/kg b.wt), and T2DM-BBR-Vild (10 mg/kg b.wt + Vild (5 mg/kg b.wt) groups. The findings demonstrated that Lip-BBR treatment could restore liver tissue microarchitectures, reduce steatosis and liver function, and regulate lipid metabolism. Moreover, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats. Lip-BBR also activated the GLP-1 expression, which stimulated insulin biosynthesis. It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation. Collectively, Lip-BBR ameliorated diabetic liver injury in a T2DM rat model with its promotion activity of AMPK/mTOR-mediated autophagy and limiting ER stress.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37143510

RESUMO

The hilly and rural areas' people of Bangladesh have a great history of putting into use numerous traditional medicinal plants to cure diseases. Therefore, with ethanol extract of Molineria capitulata (EEMC), methanol extract of Trichosanthes tricuspidata (METT), and methanol extract of Amorphophallus campanulatus (MEAC), we mandate evaluation of in vitro α-amylase inhibition, antioxidants, and molecular docking, and ADMET/T analysis. According to iodine starch methods, α-amylase inhibition was performed, and quantitative total phenolic and flavonoid content was determined by established methods, whereas DPPH free radical scavenging and reducing power assays were performed in previously established protocols, respectively. A comparative study among three plants (EEMC, METT, and MEAC) possessed a significant (p < 0.01) effect but EEMC showed the highest impact on enzyme inhibition. Plants in the measuring phenolic content METT and flavonoid measurement MEAC displayed most potent in the same way in the DPPH test was METT, and in reducing power capability MEAC has showed the highest effect between three extracts. Docking's study also reveals the compounds of METT (Cyclotricuspidoside A and Cyclotricuspidoside C) exhibit the superior score among all the compounds. This finding indicates that EEMC, METT, and MEAC substantially impact α-amylase inhibition along with antioxidants. In silico study also reveals the potency of these plants, but further in-depth, precise molecular studies are needed.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37143509

RESUMO

The oxadiazole ring has long been used for the treatment of several diseases. This study aimed to analyze the antihyperglycemic and antioxidant roles of the 1,3,4-oxadiazole derivative with its toxicity. Diabetes was induced through intraperitoneal administration of alloxan monohydrate at 150 mg/kg in rats. Glimepiride and acarbose were used as standards. Rats were divided into groups of normal control, disease control, standard, and diabetic rats (treated with 5, 10, and 15 mg/kg of 1,3,4-oxadiazole derivative). After 14 days of oral administration of 1,3,4-oxadiazole derivatives (5, 10, and 15 mg/kg) to the diabetic group, the blood glucose level, body weight, glycated hemoglobin (HbA1c), insulin level, antioxidant effect, and histopathology of the pancreas were performed. The toxicity was measured by estimating liver enzyme, renal function, lipid profile, antioxidative effect, and liver and kidney histopathological study. The blood glucose and body weight were measured before and after treatment. Alloxan significantly increased blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine. In contrast, body weight, insulin level, and antioxidant factors were reduced compared to the normal control group. Treatment with oxadiazole derivatives showed a significant reduction in blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine as compared to the disease control group. The 1,3,4-oxadiazole derivative significantly improved body weight, insulin level, and antioxidant factors compared to the disease control group. In conclusion, the oxadiazole derivative showed potential antidiabetic activity and indicated its potential as a therapeutic.

12.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829920

RESUMO

This study assessed the possible protective role of green synthesized zinc oxide nanoparticles using Moringa olifera leaf extract (MO-ZNPs) in acrylamide (ACR)-induced reproductive dysfunctions in male rats. ACR (20 mg/kg b.wt/day) and/or MO-ZNPs (10 mg/kg b.wt/day) were given orally by gastric gavage for 60 days. Then, sperm parameters; testicular enzymes; oxidative stress markers; reproductive hormones including testosterone, luteinizing hormone (LH)-estradiol, and follicle-stimulating hormone (FSH) concentration; testis histology; steroidogenesis-related gene expression; and apoptotic markers were examined. The findings revealed that MO-ZNPs significantly ameliorated the ACR-induced decline in the gonadosomatic index and altered the pituitary-gonadal axis, reflected by decreased serum testosterone and FSH with increased estradiol and LH, and sperm analysis disruption. Furthermore, a notable restoration of the tissue content of antioxidants (catalase and reduced glutathione) but depletion of malondialdehyde was evident in MO-ZNPs+ACR-treated rats compared to ACR-exposed ones. In addition, MO-ZNPs oral dosing markedly rescued the histopathological changes and apoptotic caspase-3 reactions in the testis resulting from ACR exposure. Furthermore, in MO-ZNPs+ACR-treated rats, ACR-induced downregulation of testicular steroidogenesis genes and proliferating cell nuclear antigen (PCNA) immune-expression were reversed. Conclusively, MO-ZNPs protected male rats from ACR-induced reproductive toxicity by suppressing oxidative injury and apoptosis while boosting steroidogenesis and sex hormones.

13.
Food Chem Toxicol ; 171: 113537, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442736

RESUMO

Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-ß protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-ß and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.


Assuntos
Nanopartículas , Síndromes Neurotóxicas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Catalase/metabolismo , Óxido de Zinco/farmacologia , Acrilamida/toxicidade , Acetilcolinesterase/metabolismo , Dopamina , Síndromes Neurotóxicas/etiologia
14.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36552609

RESUMO

Background: Autophagy can confer protection to pancreatic ß-cells from the harmful effects of metabolic stress by delaying apoptosis. Curcumin (CUR) alleviates oxidative and endoplasmic reticulum (ER) stress, activates autophagy, reduces inflammation, and decreases ß-cell damage in type I diabetes. Liposomal CUR (LPs-CUR) has a higher therapeutic value and better pharmacokinetics than CUR. Objectives: We determined LPs-CUR's ability to alleviate stress, reduce ß-cell damage and unraveled the mechanism underlying its protective effect using a streptozotocin (STZ)-induced type I diabetic rat model. Methods: Sprague−Dawley rats were grouped into vehicle control, STZ-diabetic (STZ 65 mg/kg), STZ-diabetic-3-MA (3-methyladenine [3-MA] 10 mg/kg b.wt), STZ. diabetic-LPs-CUR (LPs-CUR 10 mg/kg b.wt), and STZ diabetic-LPs-CUR-3-MA (LPs-CUR 10 mg/kg b.wt; 3-MA 10 mg/kg b.wt). Results: LPs-CUR significantly reduced blood glucose, oxidative stress, and cellular inflammation in the pancreatic tissue (p < 0.001). ER stress-dependent genes included ATF-6, eIF-2, CHOP, JNK, BiP, and XBP LPs-CUR significantly suppressed fold changes, while it upregulated the autophagic markers Beclin-1 and LC3-II. Conclusions: LP-CUR ameliorates ß-cell damage by targeting the autophagy pathway with the regulatory miRNAs miR-137 and miR-29b, which functionally abrogates ER stress in ß-cells. This study presents a new therapeutic target for managing type I diabetes using miR-137 and miR-29b.

15.
BMC Vet Res ; 18(1): 405, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384756

RESUMO

BACKGROUND: Uncertain effects of probiotics and/or prebiotics have been reported in experimental and clinical colitis. This study aims to examine the effects of a synbiotic combination comprising Bacillus licheniformis DSM 17236 and Saccharomyces cerevisiae cell wall extract on dextran sulfate sodium (DSS)-induced colitis in Sprague Dawley rats. METHODS: Acute colitis was induced in rats by oral administration of DSS 3.5% for 7 days. Fifty rats were divided equally into five groups; one control group and the other groups were induced with colitis and treated with or without the tested synbiotic, mixed with diet, for 28 days and sulfasalazine (100 mg/kg) via intragastric tube once daily for 14 days. RESULTS: Symptomatically, the synbiotic administration raised the disease activity index (DAI) to comparable scores of the DSS group, specially from the 2nd to 7th days post DSS intoxication. It also induced a significant (p < 0.05) amplification of WBCs, myeloperoxidase (MPO), malondialdehyde (MDA), nuclear factor kappa B (NF-kB) expression and proinflammatory cytokines tumor necrosis factor alpha (TNFα), interferon gamma (INFγ), and interleukin-1 beta (IL-1ß) while depressed the antioxidant enzymes glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) when compared with the DSS and control groups. The DSS intoxicated and Synbiotic+DSS groups showed desquamations of the covering epithelium, noticeable diffuse leukocytic infiltrations, sever catarrhal enteritis, ischemic colitis with diffuse coagulative necrosis of the entire colonic mucosa. Contrarily, sulfasalazine proved to be effective in the reduction of the tested inflammatory markers and the pathological degenerative changes of the DSS ulcerative colitis. CONCLUSION: The examined synbiotic did not ameliorate but aggravated the DSS-induced colitis, so it should be subjected to intensive experimental and clinical testing before their use in animals and human.


Assuntos
Bacillus licheniformis , Colite , Doenças dos Roedores , Simbióticos , Humanos , Ratos , Animais , Sulfato de Dextrana/toxicidade , Saccharomyces cerevisiae , Sulfassalazina/efeitos adversos , Ratos Sprague-Dawley , Colite/induzido quimicamente , Colite/terapia , Colite/metabolismo , Colite/veterinária
16.
Aquat Toxicol ; 250: 106257, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35933907

RESUMO

The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Fígado , Metomil/metabolismo , Metomil/farmacologia , Nitrilas , Estresse Oxidativo , Piretrinas , Taurina/metabolismo , Taurina/farmacologia , Poluentes Químicos da Água/toxicidade
17.
Life (Basel) ; 12(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35629307

RESUMO

Background: Due to the increased use of titanium dioxide nanoparticles (TiO2 NPs), the risks of their reprotoxic effect arise. This study anticipated examining the potential protective effects of GEO (geranium essential oil) components screened via GC/MS analysis against the reprotoxic impacts of TiO2 NPs on male rats. Methods: Thirty-two adult male rats were randomly assigned to four groups: control, GEO (75 mg/kg bwt/orally/day/60 days), TiO2 NPs (100 ppm/rat/IP/day/60 days), and TiO2 NPs + GEO. After 60 days, hormonal assay, semen appraisal, lipid peroxidation, antioxidant enzymes, testis and prostate morphometry, and the steroidogenesis-related genes' mRNA expressions were assessed. Results: The TEM and DLS results demonstrated that synthesized TiO2 NPs are spherical with minimal aggregations polydispersed and varying in size from 50 to 100 nm. TiO2 NPs IP injection-induced sperm abnormalities decreased the percent of motile sperms in the sperm count, reduced sex hormone levels, altered the testicular oxidant/antioxidant status and mRNA expression of steroid-related genes, and induced architectural alterations in testicular, epididymal, and prostate gland tissues. GEO significantly rescued the TiO2 NPs-altered spermiogram, sex hormones, and antioxidant capacity, restored the tissue architectures, and enhanced steroidogenesis-related gene mRNA expression. Conclusions: These findings may significantly contribute to developing combinatorial treatments for infertility associated with various environmental and industrial xenobiotic exposures.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35388308

RESUMO

The present study examines the neuropharmacological and antidiabetic properties of methanol leaves extract of Lannea coromandelica in animal models. This study is carried out by elevated plus-maze apparatus, motor coordination, thiopental sodium has an induction role in sleeping time, hole board, hole cross, open field, antidiabetic studies. Mice were treated doses of 100, 150, and 200 mg/kg body weight in elevated plus-maze apparatus and motor coordination; 100 and 200 mg/kg body weight in sleeping time, hole cross, hole board, and open field tests; and 200 and 400 mg/kg body weight in the antidiabetic activity test. Extraction specifies a significantly decreased time duration and sleeping time in a thiopental sodium-induced sleeping time test. The experimental extract decreased locomotor and exploratory behaviors of mice in the open-field and hole-cross tests compared to the effects of the control. Furthermore, the extract increased sleeping time with a dose-dependent onset of action. The hole-board test extract also demonstrated a reduced number of head dips. The findings showed that L. coromandelica has potential neuropharmacological effects. In addition, in alloxan-induced diabetic mice, leaves extract at 200 and 400 mg/kg body weight revealed significant antidiabetic properties and could be used to manage blood glucose levels with more research.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35265150

RESUMO

Ginkgo biloba is an ancient plant species that is thought to provide a variety of health benefits to living organisms and contains plenty of bioactive components, making it a chemically diversified plant. G. biloba has been shown to have a variety of medicinal and pharmacological properties, including anticancer, antidementia, antidiabetic, antiobesity, antilipidemic, antimicrobial, antioxidant, antilipid peroxidation, antiplatelet, anti-inflammatory, hepatoprotective, antidepressant, antiaging, immunomodulatory, antihypertensive, and neuroprotective effects and is frequently used to treat neurological, cardiovascular, and respiratory diseases, such as tardive dyskinesia. Therefore, this review described the therapeutic applications of G. biloba. In addition to describing the therapeutic potential, this review also evaluates the chemical constituents, toxicity, adverse effect, synergistic effect, and the clinical studies of this plant which have been utilized for therapeutic benefits but have demonstrated other consequences. The capacity of G. biloba components to act as free radical scavengers is critical, and combining its extract with other plant extracts has been shown to synergistically boost antioxidant properties. G. biloba used long-term or at high doses that resulted in some adverse effects. Severe drug interactions have also been reported in both animals and humans when combined with other medications. The available data established from both preclinical and clinical studies confirm the potential of G. biloba plant extract in various diseases. Besides, the safety and efficacy of G. biloba continue to require verification through additional experimentation to guide medicinal use.

20.
Int J Legal Med ; 136(6): 1781-1789, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35132471

RESUMO

The skin wound age determination in living subjects is an imperative task for forensic experts. In this study, we investigated the time-dependent expression of high-mobility group box-1 (HMGB1) and toll-like receptors 2 and 4 (TLR2 and 4) in rat skin wounds using real-time PCR and seek their forensic potentials during the skin wound repair process. In addition, the levels of serum pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6)), as well as nitric oxide (NO) production, were measured. The wound tissue and serum samples were collected after 30 min, 2 h, 6 h, 12 h, 1 day, 3 days, 5 days, and 7 days after incision. As a control (zero time), skin specimens and blood samples were collected without incision. The results reveal that the HMGB1, TLR2, and TLR4 expression levels were increased in a time-dependent manner until the first day where the peak level was achieved for the three tested genes compared with the zero time. On the 7th day, the statistical significance was lost for TLR2 and TLR4 but persisted for HMGB1. The serum TNF-α, IL6, and NO levels peaked within 30 min and 1st and 3rd day after injury, respectively. On the 7th day after incision, no significant differences exist in the TNF-α serum level compared to the control group, but the statistical significance persisted for IL6 and NO. It was apparent that the analyzed genes in the wound tissues showed higher R2 values rather than the serum biochemical indicators. Of note, a strong positive correlation was evident between the HMGB1 and that of TLR2 and TLR4 relative expression as well as IL-6 serum level. Conclusively, based on the observed changes in the analyzed markers in wound tissues and serum and R2 values obtained from mathematical models established to determine the wound age, the relative expression of HMGB1, TLR2, and TLR4 could be a reliable indicator for wound age determination in living subjects. Further investigation of these markers and mathematical models in human tissues is necessary.


Assuntos
Proteína HMGB1 , Animais , Humanos , Ratos , Citocinas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interleucina-6 , Óxido Nítrico , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA