Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28614, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590851

RESUMO

Some plant species may exhibit new microenvironments which lead to significant changes in the cover and diversity of the coexisting species. In this investigation, we evaluated the effects of Plantago lagopus L. on the cover and diversity of the associated plant species in the urban vegetation. A total of 70 plots were conducted in sites with- and without this species in urban gardens. Cover of the associated species and different diversity indices including species richness, Shannon-Wiener, evenness, and Simpson indices were measured. The allelopathic potential of P. lagopus was verified using its rhizosphere and non-rhizosphere soils on two target species existing within the same environment. Some soil criteria and seed sizes of the associated species were also determined. Most of the coexisting weeds were reduced in terms of their cover in plots with Plantago. The reduction of plant diversity depended on its cover. Besides, the aboveground biomass was reduced in sites comprising Plantago. The degree of inhibition was not related to the seed size of the species found. This species reduced the incident solar radiation and the local temperature over the soil surface. The locations exhibiting such species contained lower contents of available potassium and zinc. Rhizosphere soil of P. lagopus substantially inhibited germination and growth of Amaranthus viridis, but it didn't do so for Medicago lupulina. Reduction in cover, diversity, and biomass of the urban weeds associated with P. lagopus may be related to the reduction of received solar radiation, soil temperature, and nutrient availability. The allelopathic potential of P. lagopus may have a partial role in this reduction. These results suggest that P. lagopus may create a microenvironment of new conditions not favorable for most of the coexisting species.

2.
Plants (Basel) ; 12(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960091

RESUMO

Exotic plants usually exhibit problems for native species where they coexist. This study evaluated the effect of naturalized alien Cenchrus echinatus L. on native plants in urban vegetation. A field trial was conducted to assess the effect of this species on the cover and diversity of the native vegetation. The allelopathic potential of such species was examined. Sites comprising C. echinatus had a lower cover than some native species. Lower floristic diversity was observed at higher densities of this plant. The soil under this plant attained lower N, P, and K contents. This soil had no effect on the germination and growth of native species. It also comprised germinable seeds of some species which were absent from the standing vegetation. Exotic C. echinatus may exert negative effects on the native vegetation of the urban plant communities. A dense cover of this species may inhibit the germination of native species, leading to a reduction in their cover. Reduction in cover and diversity of native species may not be attributed to allelopathy. These results suggest that naturalized C. echinatus may be more competitive than the native ones, particularly at higher densities. Furthermore, it may represent a threat to the native plants in the urban vegetation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA