Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 28(3-4): 333-350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36987794

RESUMO

Chronic Inflammatory bowel diseases are usually accompanied by opportunistic colonic fungal infections. Itraconazole (ITZ), is a highly lipophilic broad-spectrum antifungal drug that is superiorly effective against several fungal species. Box-Behnken design was adopted to design ITZ-nanomixed micelles (ITZ-NMMs), aiming to enhance ITZ solubility, using various concentrations of Pluronic® L121, Cremophor EL, and with either sodium-deoxycholate or Pluronic® F68 through thin film hydration technique. Optimized formula composed of 90 % Pl-L121, 9.1% Cremophor EL, 3.127 % ITZ concentration and SDC as the hydrophilic surfactant and its particle size, Polydispersity index, zeta potential, entrapment efficiency, and release extent after 3 h were found to be 17.82 ± 0.189 nm, 0.26 ± 0.014, -6.72 ± 0.725 mV, 66 ± 7.4%, and 96.3 ± 7.22%, respectively. In vitro ITZ release study implied the ability of optimal ITZ-NMMs to enhance ITZ solubility in comparison to ITZ suspension. Also, augmented anti-fungal and anti-cancer activities were proven as ITZ-NMMs IC50 was 16.5 times that of pure ITZ. Afterwards, lyophilized optimal ITZ-NMMs formula was loaded into Eudragit S100-coated capsules where in vitro release and in vivo X-ray imaging ensured protection of ITZ release in either the stomach or intestine and targeting it to the colon. Such results suggested promising ITZ-NMMs system, capable of enhancing ITZ solubility in the intended target site, therefore, can be used not only in the treatment of colon fungal infections but also augments colon cancer therapy.


Assuntos
Antifúngicos , Itraconazol , Itraconazol/farmacologia , Antifúngicos/farmacologia , Micelas , Poloxâmero , Colo
2.
AAPS PharmSciTech ; 22(8): 261, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705130

RESUMO

The first melatonergic antidepressant drug, agomelatine (AGM), is commonly used for controlling major depressive disorders. AGM suffers low (< 5%) oral bioavailability owing to the hepatic metabolism. The current work investigated the potential of low-frequency sonophoresis on enhancing transdermal delivery of AGM-loaded novasomes and, hence, bioavailability of AGM. Drug-loaded novasomes were developed using free fatty acid (stearic acid or oleic acid), surfactant (span 60 or span 80), and cholesterol via thin-film hydration technique. The systems (N1-N16) were assessed for zeta potential (ZP), particle size (PS), encapsulation efficiency (EE%), and drug percent released after 0.5 h (Q0.5 h) and 8 h (Q8h), drug-crystallinity, morphology, and ex vivo drug permeation. Skin pre-treatment with low-frequency ultrasound (LFU) waves, via N13-novasomal gel systems, was optimized to enhance ex vivo drug permeation. Influences of LFU mode (continuous or pulsed), duty cycle (50% or 100%), and application period (10 or 15 min) were optimized. The pharmacokinetics of the optimized system (N13-LFU-C4) was assessed in rabbits. N13 was the best achieved novasomal system with respect to PS (471.6 nm), ZP (- 63.6 mv), EE% (60.5%), Q0.5 h (27.8%), Q8h (83.9%), flux (15.5 µg/cm2/h), and enhancement ratio (6.9). N13-LFU-C4 was the optimized novasomal gel system (desirability; 0.997) which involves skin pre-treatment with LFU in a continuous mode, at 100% duty cycle, for 15 min. Compared to AGM dispersion, the significantly (P < 0.05) higher flux (26.7 µg/cm2/h), enhancement ratio (11.9), Cmax (118.23 ng/mL), and relative bioavailability (≈ 8.6 folds) could elucidate the potential of N13-LFU-C4 system in improving transdermal drug permeability and bioavailability.


Assuntos
Transtorno Depressivo Maior , Absorção Cutânea , Acetamidas , Administração Cutânea , Animais , Disponibilidade Biológica , Transtorno Depressivo Maior/metabolismo , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Coelhos , Pele/metabolismo
3.
Int J Nanomedicine ; 15: 8893-8910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33209023

RESUMO

AIM: Agomelatine (AGM) is the first melatonergic antidepressant. It suffers from low oral bioavailability (<5%) due to extensive hepatic metabolism. The current work aimed to develop an alternative AGM-loaded invasomes to enhance transdermal drug bioavailability. METHODOLOGY: AGM-loaded invasomes were developed using two drug: lipid ratios (1:10 or 1:7.5), four terpene types (limonene, cineole, fenchone or citral) and two terpene concentrations (0.75% or 1.5%, w/v). They were characterized for drug entrapment efficiency (EE%), particle size (PS), zeta potential (ZP) and drug released percentages after 0.5h (Q0.5h) and 8h (Q8h). The optimum invasomes (I1, I2 and I4) were evaluated for morphology, drug-crystallinity, and ex-vivo drug flux. The variables influencing sonophoresis of the best achieved invasomal gel system (I2) were optimized including, ultrasound frequency (low, LFU or high, HFU), mode (pulsed or continuous), application period (10 min or 15 min) and duty cycle (50% or 100%). AGM pharmacokinetics were evaluated in rabbits following transdermal application of I2-LFU-C4 system, relative to AGM oral dispersion. RESULTS: The superiority of I2 invasomes [comprising AGM and phosphatidylcholine (1:10) and limonene (1.5% w/v)] was statistically revealed with respect to EE% (78.6%), PS (313 nm), ZP (-64 mV), Q0.5h (30.1%), Q8h (92%), flux (10.79 µg/cm2/h) and enhancement ratio (4.83). The optimum sonophoresis conditions involved application of LFU in the continuous mode for 15 min at a 100% duty cycle (I2-LFU-C4 system). The latter system showed significantly higher Cmax, and relative bioavailability (≈ 7.25 folds) and a similar Tmax (0.5 h). CONCLUSION: I2-LFU-C4 is a promising transdermal system for AGM.


Assuntos
Acetamidas/administração & dosagem , Acetamidas/farmacocinética , Pele/metabolismo , Ondas Ultrassônicas , Administração Cutânea , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Lipossomos , Tamanho da Partícula , Coelhos , Ratos , Ratos Wistar
4.
Drug Dev Ind Pharm ; 45(7): 1157-1167, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919700

RESUMO

Objective: Novel niosomal formulation may be successfully applied to treat a systemic disease such as migraine through transdermal drug delivery system (TDDS), moreover, the treatment of topical diseases such as mycotic infections by targeting and localizing the drug to the stratum corneum. The current study aims to formulate zolmitriptan (Zt) in niosomal vesicles to potentiate its transdermal effect. Significance: The development of a promising niosomal formulation will push the scaling up of pharmaceutical industry in this field. Methods: Design- Expert 10 was used to design twelve formulations using Box-Behnken. Zt loaded niosomes were prepared by the thin film hydration method using Span 60(S 60), Span 80(S 80) along with cholesterol(Ch) at three different levels. The optimized formulation (F11) was formulated in Emulgel (1:1 emulsion/gel ratio). Results: The vesicles revealed vesicle size (VS) ranging from 133.1 to 851.3 nm, zeta potential (ZP) -43.8 to -82.8 mV, entrapment efficiency (EE%) from 66.7 to 88.7%, and Zt release after 4 h up to 67%. Optimized niosomal formulation (F11) depicted the smallest VS (133.1 nm), highest EE (88.7%), high ZP (-80.6 mV) and satisfactory release after 4 h (61.5%). There was a significant difference (p <.05) in drug permeation after 8 h for niosomal F11(460.98 ug/cm2) and niosomal F11 loaded Emulgel (336.92 ug/cm2) compared to plain Zt loaded emulgel (160.83 ug/cm2). Niosomal F11 loaded emulgel showed thixotropic behavior of rapid recovery, significant bioavailability and pharmacokinetic parameters as compared to the plain Zt-loaded Emulgel. Conclusion: Optimized F11 represents a promising formulation for transdermal drug delivery system to treat both topical and systemic diseases.


Assuntos
Géis/química , Lipossomos/química , Oxazolidinonas/química , Triptaminas/química , Administração Cutânea , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Colesterol/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Coelhos , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos
5.
Pharm Dev Technol ; 24(3): 293-302, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29723110

RESUMO

Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q2h) and 24 h (Q24h). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q2 h (41.45%) and Q24 h (74.05%). Compared to Levitra® tablets, the significantly (p < 0.01) delayed Tmax, prolonged MRT(0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.


Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos , Inibidores da Fosfodiesterase 5/administração & dosagem , Dicloridrato de Vardenafila/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Preparações de Ação Retardada , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Masculino , Tamanho da Partícula , Inibidores da Fosfodiesterase 5/farmacocinética , Coelhos , Solventes/química , Fatores de Tempo , Dicloridrato de Vardenafila/farmacocinética
6.
AAPS PharmSciTech ; 19(8): 3650-3660, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30291543

RESUMO

Vardenafil hydrochloride is commonly used for the curing of erectile dysfunction. VAR suffers certain limitations: (i) short elimination half-life (4-5 h), (ii) low aqueous solubility (0.11 mg/mL), (iii) susceptibility to extensive first-pass metabolism and drug efflux transporters (P-glycoprotein), and (iv) limited (15%) oral bioavailability. The current study focused on the development of VAR lipomers as promising modified release systems able to enhance oral bioavailability. VAR-lipomers (lipid-polymer complexes) were successfully developed by a modified precipitation technique employing a lipid (polyglyceryl-6-distearate or glyceryl tristearate) and an amphiphilic polymer (Gantrez®). Three VAR:lipid ratios [1:1, 1:2, and 1:3] and three VAR:Gantrez® ratios [4:1, 2:1, and 1:1] were investigated. Solid-state characterization studies involved differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The systems were assessed for particle size, polydispersity index (PDI), zeta-potential, VAR entrapment-efficiency (EE%), morphology, and VAR released % after 2 h (Q2h) and 8 h (Q8h). The best-achieved system (the highest desirability) was promoted for pharmacokinetic studies in fasted rabbits. Statistical analysis of data revealed that L9 system (PGDS, VAR, and Gantrez®; 3:1:1, respectively) had the highest desirability (0.85) with respect to spherical particle size (622.15 nm), PDI (0.11), zeta-potential (-27.90 mV), EE% (62.80%), Q2h (43.45%), and Q8h (77.40%). With respect to Levitra® tablets, the significantly higher relative bioavailability (170%), delayed Tmax, and extended MRT(0-∞) clarified the dual ability of L9 system. Lipomers are emerging systems capable of modifying the rate of VAR release and promoting its oral bioavailability.


Assuntos
Lipídeos/química , Polímeros/química , Dicloridrato de Vardenafila/química , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Masculino , Coelhos , Solubilidade , Dicloridrato de Vardenafila/farmacocinética
7.
AAPS PharmSciTech ; 19(5): 2276-2287, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845503

RESUMO

Ondansetron hydrochloride (OND) is commonly used for management of postoperative and chemotherapeutic-induced nausea and vomiting. It suffers from low bioavailability (60%) and rapid elimination (t1/2; 3-4 h). The current work aimed to develop OND-loaded bilosomes as a promising transdermal delivery system capable of surmount drug limitations. The variables influencing the development of OND-loaded bilosomes and niosomes (18 systems) via the thin film hydration technique were investigated, including surfactant type (Span®60 or Span®80), surfactant/cholesterol molar ratio (7:0, 7:1, or 7:3), and sodium deoxycholate (SDC) concentration (0, 2.5, or 5%, w/v). The systems were characterized for particle size, polydispersity index, zeta potential, drug entrapment efficiency (EE%), and in vitro permeation. Based on factorial analysis (32·21) and calculations of desirability values, six systems were further subjected to ex vivo permeation through excised rat skin, differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and transmission electron microscopy. Histopathological and in vivo permeation studies in rats were conducted on the best achieved system (B6) in comparison to drug solution. Higher desirability values were achieved with Span® 60-based bilosomes, surfactant/cholesterol molar ratio of 7:1, and SDC concentration of 2.5% w/v with respect to small vesicle size, polydispersity index and high zeta potential, EE%, and cumulative drug permeation. OND was dispersed in amorphous state as revealed from DSC and PXRD studies. No marked effect was observed in rat skin following application of B6 system while higher ex vivo and in vivo cumulative permeation profiles were revealed. Bilosomal systems were considered as safe and efficient carriers for the transdermal delivery for OND.


Assuntos
Antieméticos/administração & dosagem , Antieméticos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ondansetron/administração & dosagem , Ondansetron/metabolismo , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Animais , Animais Recém-Nascidos , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Lipossomos , Masculino , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea/fisiologia , Tensoativos/química , Difração de Raios X
8.
Mol Pharm ; 10(8): 2942-7, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23883311

RESUMO

Terbutaline sulfate fast dissolving sublingual films were prepared using seven drug compatible film formers in different combinations and proportions. The film polymers are maltodextrin, Na alginate, Carpabol 430, xanthan gum, HPMC E5, PVP K-25, and Na CMC. Propylene glycol and sorbitol were used as plasticizers and mannitol as filler. The optimum polymer concentrations and the plasticizer amount were selected on the basis of flexibility, tensile strength, and stickiness of the films. The prepared films were evaluated for their tensile strength, thickness uniformity, disintegration time (in vitro and in vivo), in vitro dissolution, and moisture content. Polymer type rather than total polymer concentration or plasticizer amount showed a significant effect on the tested film properties. A randomized, single dose, crossover study was conducted in four healthy volunteers to compare the pharmacokinetic profile of terbutaline sulfate from the prepared films and the conventional oral tablets. The film formula of choice gave a significantly faster drug absorption rate and recorded a relative bioavailability of 204.08%. Sublingual films could be promising as a convenient delivery system for terbutaline sulfate in patients with swallowing problems. The improved extent of absorption (higher AUC(0-24)) indicates success in improving drug bioavailability, and the faster absorption rate could be promising for the management of acute episodes of asthma.


Assuntos
Alginatos/administração & dosagem , Alginatos/farmacocinética , Administração Oral , Administração Sublingual , Adulto , Varredura Diferencial de Calorimetria , Estudos Cross-Over , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/farmacocinética , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/farmacocinética , Humanos , Masculino , Pessoa de Meia-Idade , Polímeros/química , Polissacarídeos/química , Polissacarídeos Bacterianos/química , Propilenoglicol/química , Sorbitol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Terbutalina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA