Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 278(Pt 2): 134813, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154675

RESUMO

With rapid industrial expansion, environmental pollution from emerging contaminants has increased, posing severe ecosystem threats. Laccases offer an eco-friendly solution for degrading hazardous substances, but their use as free-form biocatalysts face challenges. This study immobilized laccase (PersiLac1) on green-synthesized Si@Fe nanoparticles (MSFM NPs) to remove pollutants like Malachite Green-containing wastewater and degrade plastic films. Characterization techniques (FTIR, VSM, XRD, SEM, EDS, BET) confirmed the properties and structure of MSFM NPs, revealing a surface area of 31.297 m2.g-1 and a pore diameter of 12.267 nm. The immobilized PersiLac1 showed enhanced activity across various temperatures and pH levels, retaining over 82 % activity after 15 cycles at 80°C with minimal leaching. It demonstrated higher stability, half-life, and decimal reduction time than free laccase. Under 1 M NaCl, its activity was 1.8 times higher than the non-immobilized enzyme. The immobilized laccase removed 98.11 % of Malachite Green-containing wastewater and retained 82.92 % activity over twenty cycles of dye removal. Additionally, FTIR and SEM confirmed superior plastic degradation under saline conditions. These findings suggest that immobilizing PersiLac1 on magnetic nanoparticles enhances its function and potential for contaminant removal. Future research should focus on scalable, cost-effective laccase immobilization methods for large-scale environmental applications.


Assuntos
Enzimas Imobilizadas , Química Verde , Lacase , Nanopartículas de Magnetita , Poluentes Químicos da Água , Lacase/química , Lacase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanopartículas de Magnetita/química , Poluentes Químicos da Água/química , Química Verde/métodos , Concentração de Íons de Hidrogênio , Águas Residuárias/química , Temperatura , Porosidade , Corantes de Rosanilina/química , Estabilidade Enzimática , Ferro/química , Purificação da Água/métodos , Metagenoma
2.
Sci Rep ; 14(1): 6820, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514699

RESUMO

Compliant leg function found during bouncy gaits in humans and animals can be considered a role model for designing and controlling bioinspired robots and assistive devices. The human musculoskeletal design and control differ from distal to proximal joints in the leg. The specific mechanical properties of different leg parts could simplify motor control, e.g., by taking advantage of passive body dynamics. This control embodiment is complemented by neural reflex circuitries shaping human motor control. This study investigates the contribution of specific passive and active properties at different leg joint levels in human hopping at different hopping frequencies. We analyze the kinematics and kinetics of human leg joints to design and control a bioinspired hopping robot. In addition, this robot is used as a test rig to validate the identified concepts from human hopping. We found that the more distal the joint, the higher the possibility of benefit from passive compliant leg structures. A passive elastic element nicely describes the ankle joint function. In contrast, a more significant contribution to energy management using an active element (e.g., by feedback control) is predicted for the knee and hip joints. The ankle and knee joints are the key contributors to adjusting hopping frequency. Humans can speed up hopping by increasing ankle stiffness and tuning corresponding knee control parameters. We found that the force-modulated compliance (FMC) as an abstract reflex-based control beside a fixed spring can predict human knee torque-angle patterns at different frequencies. These developed bioinspired models for ankle and knee joints were applied to design and control the EPA-hopper-II robot. The experimental results support our biomechanical findings while indicating potential robot improvements. Based on the proposed model and the robot's experimental results, passive compliant elements (e.g. tendons) have a larger capacity to contribute to the distal joint function compared to proximal joints. With the use of more compliant elements in the distal joint, a larger contribution to managing energy changes is observed in the upper joints.


Assuntos
Robótica , Humanos , Articulação do Joelho , Articulação do Tornozelo , Tornozelo , Joelho , Fenômenos Biomecânicos , Perna (Membro)
3.
Int J Biol Macromol ; 266(Pt 1): 130986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508564

RESUMO

Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses. Characterization of NiO nanoparticles revealed distinctive FTIR absorption peaks indicating the nanoparticulate structure, while FESEM showed structured NiO with robust interconnections and dimensionality of about 50nm, confirmed by EDX analysis to have a consistent distribution of Ni and O. The immobilized PersiLac1 demonstrated enhanced thermal stability, with 85.55 % activity at 80 °C and reduced enzyme leaching, retaining 67.93 % activity across 15 biocatalytic cycles. It efficiently reduced rice straw (RS) phenol by 67.97 % within 210 min and degraded 70-78 % of tetracycline (TC) across a wide pH range (4.0-8.0), showing superior performance over the free enzyme. Immobilized laccase achieved up to 71 % TC removal at 40-80 °C, significantly outperforming the free enzyme. Notably, 54 % efficiency was achieved at 500 mg/L TC by immobilized laccase at 120 min. This research showed the potential of green-synthesized NiO nanoparticles to effectively immobilize laccase, presenting an eco-friendly approach to purify pollutants such as phenols and antibiotics. The durability and reusability of the immobilized enzyme, coupled with its ability to reduce pollutants, indicates a viable method for cleaning the environment. Nonetheless, the production costs and scalability of NiO nanoparticles for widespread industrial applications pose significant challenges. Future studies should focus on implementation at an industrial level and examine a wider range of pollutants to fully leverage the environmental clean-up capabilities of this innovative technology.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Enzimas Imobilizadas , Resíduos Industriais , Lacase , Níquel , Lacase/química , Lacase/genética , Estabilidade Enzimática , Metagenoma , Poluentes Ambientais/isolamento & purificação , Níquel/química , Recuperação e Remediação Ambiental/métodos , Salvadoraceae/química , Folhas de Planta/química , Enzimas Imobilizadas/química , Biocatálise
4.
Commun Biol ; 7(1): 217, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383808

RESUMO

Associations between datasets can be discovered through multivariate methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and generalizability of CCA/PLS associations is stability of their feature patterns. However, stability of CCA/PLS in high-dimensional datasets is questionable, as found in empirical characterizations. To study these issues systematically, we developed a generative modeling framework to simulate synthetic datasets. We found that when sample size is relatively small, but comparable to typical studies, CCA/PLS associations are highly unstable and inaccurate; both in their magnitude and importantly in the feature pattern underlying the association. We confirmed these trends across two neuroimaging modalities and in independent datasets with n ≈ 1000 and n = 20,000, and found that only the latter comprised sufficient observations for stable mappings between imaging-derived and behavioral features. We further developed a power calculator to provide sample sizes required for stability and reliability of multivariate analyses. Collectively, we characterize how to limit detrimental effects of overfitting on CCA/PLS stability, and provide recommendations for future studies.


Assuntos
Algoritmos , Análise de Correlação Canônica , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
5.
Biochem Genet ; 62(1): 18-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37394575

RESUMO

A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.


Assuntos
Neoplasias , Polietilenoimina , Polietilenoimina/química , Técnicas de Transferência de Genes , Terapia Genética , Transfecção , Neoplasias/genética , Neoplasias/terapia
6.
Int Immunopharmacol ; 125(Pt A): 111101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922568

RESUMO

There are multiple treatment strategies that have been reported for breast cancer, while new and effective therapies against it are still necessary. Stimulating the immune system and its components against cancer cells is one of the unique treatment strategies of immunotherapy and long dsRNAs are immunostimulant in this regard. Based on bioinformatics approaches, a fragment of the Rice ragged stunt RNA virus genome was selected and synthesized according to its immunogenicity. Based on the in vitro transcription technique, dsRNA was synthesized and its binding ability to the PEI/PEI-Ac Polyethylenimine (PEI) or Acetylated polyethylenimine (PEI-Ac) was verified by the gel retardation assay. Then, the PEI-Ac was synthesized by adding acetyl groups to the PEI, and the results of the 1H NMR method indicated its successful synthesis. After cancer induction by 4 T1 cells in Balb/C mice, intraperitoneal (IP) and intratumoral (IT) treatment by the PEI/PEI-Ac-dsRNA were performed and the tumor growth inhibition was evaluated. Results demonstrated that PEI/PEI-Ac-dsRNA can lead to a decrease in tumor weight and volume in both the IP and IT routes. Also, by using macro-metastatic nodule counting and hematoxylin and eosin (H&E) staining we showed that PEI/PEI-Ac-dsRNA can prevent micro and macro-metastasis in the lung. Therefore, the PEI/PEI-Ac-dsRNA acts as an effective inhibitor of growth and metastasis of the breast cancer models. We showed that viral dsRNA can exert its antitumor properties by stimulating TNF-α and IFN-γ. In general, our results revealed that dsRNA derived from the plant virus genome stimulates the intrinsic immune system and can be a potential immune stimulant drug for cancer treatment.


Assuntos
Adjuvantes Imunológicos , Neoplasias , Animais , Camundongos , Polietilenoimina , RNA de Cadeia Dupla
7.
Sci Rep ; 13(1): 6212, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069212

RESUMO

Safflower (Carthamus tinctorius, Asteraceae) is a source of high-quality edible oil growing in moisture-limited environments. Despite its economic importance, the relationships to close wild species in Carthamus and the presence and relationships of ecotypes within safflower are still not fully clarified. Here we use genotyping-by-sequencing to identify the wild progenitor of C. tinctorius, infer phylogenetic relationship within the series Carthamus and identify groups of closely related lineages within cultivated safflower. Phylogenetic and population genomic analyses found C. palaestinus to be the closest relative and single progenitor of C. tinctorius, which confirms the Levant as the area of domestication of the crop. Flow cytometry showed all analyzed samples of C. oxyacantha, C. palaestinus and C. tinctorius to be diploid (2n = 2x = 24) with 2C genome sizes of 2.4-2.7 pg. Analyses of a set of 114 worldwide distributed safflower accessions arrived at two to five genetic groups, which showed, however, no correlation with the geographic origins of these accessions. From this, we conclude that the trade of safflower seeds resulted in multiple introductions of genotypes from the Levant into other areas with suitable climate conditions for the plant, as well as exchange of genotypes among these areas.


Assuntos
Carthamus tinctorius , Carthamus tinctorius/genética , Filogenia , Genótipo , Genômica , Análise de Sequência de DNA
8.
Eur J Neurosci ; 57(2): 373-387, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453757

RESUMO

The reciprocal interaction between pain and negative affect is acknowledged but pain-related alterations in brain circuits involved in this interaction, such as the mediodorsal thalamus (MDThal), still require a better understanding. We sought to investigate the relationship between MDThal circuitry, negative affect and pain severity in chronic musculoskeletal pain. For these analyses, participants with chronic knee pain (CKP, n = 74) and without (n = 36) completed magnetic resonance imaging scans and questionnaires. Seed-based MDThal functional connectivity (FC) was compared between groups. Within CKP group, we assessed the interdependence of MDThal FC with negative affect. Finally, post hoc moderation analysis explored whether burden of pain influences affect-related MDThal FC. The CKP group showed altered MDThal FC to hippocampus, ventromedial prefrontal cortex and subgenual anterior cingulate. Furthermore, in CKP group, MDThal connectivity correlated significantly with negative affect in several brain regions, most notably the medial prefrontal cortex, and this association was stronger with increasing pain burden and absent in pain-free controls. In conclusion, we demonstrate mediodorsal thalamo-cortical dysconnectivity in chronic pain with areas linked to mood disorders and associations of MDThal FC with negative affect. Moreover, burden of pain seems to enhance affect sensitivity of MDThal FC. These findings suggest mediodorsal thalamic network changes as possible drivers of the detrimental interplay between chronic pain and negative affect.


Assuntos
Dor Crônica , Humanos , Giro do Cíngulo , Tálamo , Comorbidade , Afeto , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico
9.
EBioMedicine ; 86: 104356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413936

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung parenchyma. It has a known polygenetic risk, with at least seventeen regions of the genome implicated to date. Growing evidence suggests linked multimorbidity of IPF with neurodegenerative or affective disorders. However, no study so far has explicitly explored links between IPF, associated genetic risk profiles, and specific brain features. METHODS: We exploited imaging and genetic data from more than 32,000 participants available through the UK Biobank population-level resource to explore links between IPF genetic risk and imaging-derived brain endophenotypes. We performed a brain-wide imaging-genetics association study between the presence of 17 known IPF risk variants and 1248 multi-modal imaging-derived features, which characterise brain structure and function. FINDINGS: We identified strong associations between cortical morphological features, white matter microstructure and IPF risk loci in chromosomes 17 (17q21.31) and 8 (DEPTOR). Through co-localisation analysis, we confirmed that cortical thickness in the anterior cingulate and more widespread white matter microstructure changes share a single causal variant with IPF at the chromosome 8 locus. Post-hoc preliminary analysis suggested that forced vital capacity may partially mediate the association between the DEPTOR variant and white matter microstructure, but not between the DEPTOR risk variant and cortical thickness. INTERPRETATION: Our results reveal the associations between IPF genetic risk and differences in brain structure, for both cortex and white matter. Differences in tissue-specific imaging signatures suggest distinct underlying mechanisms with focal cortical thinning in regions with known high DEPTOR expression, unrelated to lung function, and more widespread microstructural white matter changes consistent with hypoxia or neuroinflammation with potential mediation by lung function. FUNDING: This study was supported by the NIHR Nottingham Biomedical Research Centre and the UK Medical Research Council.


Assuntos
Endofenótipos , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/genética , Pulmão/diagnóstico por imagem , Fatores de Risco , Encéfalo/diagnóstico por imagem , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
PLoS One ; 17(9): e0274588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174006

RESUMO

Salinity is a major abiotic stress affecting cereal production. Thus, tritipyrum (x. Tritipyrum), a potential novel salt-tolerant cereal, was introduced as an appropriate alternative for cereal production. The purposes of this study were to evaluate agronomic traits, yield, and yield stability of eight primary tritipyrum lines, five promising triticale lines, and four bread wheat varieties and to screen a stable yielding line. The experiments were conducted in randomized complete block designs with three replicates in three locations during four growing seasons. Analysis of variance in each environment and Bartlett's test for the variance homogeneity of experimental errors were made. Subsequently, separate experiments were analyzed as a combined experiment. The stability of grain yield was analyzed according to Eberhart and Russell's regression method, environmental variance, Wrick's ecovalance, Shokla's stability variance, AMMI, and Tai methods. Genotype × environment interactions (GEI) and environments were significant for the agronomic traits. Stability analysis revealed that combined primary tritipyrum line (Ka/b)(Cr/b)-5 and triticale 4115, 4108, and M45 lines had good adaptability in all environments. The results of the AMMI3 model and pattern analysis showed that the new cereal, tritipyrum, had the most stable response in various environments. The tritipyrum line (Ka/b)(Cr/b)-5 had the best yield performance and general adaptability. Based on Tai's method, the contribution of spike number to the stability of grain yield over different environments was higher than that of other yield components. Also, tritipyrum lines demonstrated higher stability compared with wheat and triticale. Totally, M45 triticale and tritipyrum (Ka/b)(Cr/b)-5 lines were the most stable genotypes with high grain yield. Complementary agronomic experiments may then release a new grain crop of triticale and a new pasture line of combined primary tritipyrum for grain and forage. Moreover, the combined tritipyrum line can be used in bread wheat breeding programs for producing salt-tolerant wheat cultivars.


Assuntos
Pão , Triticale , Grão Comestível/genética , Melhoramento Vegetal , Triticale/genética , Triticum/genética
11.
Eur J Neurol ; 29(5): 1344-1353, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35129272

RESUMO

BACKGROUND AND PURPOSE: Anticholinergic (AC) medication use is associated with cognitive decline and dementia, which may be related to an AC-induced central hypocholinergic state, but the exact mechanisms remain to be understood. We aimed to further elucidate the putative link between AC drug prescription, cognition, and structural and functional impairment of the forebrain cholinergic nucleus basalis of Meynert (NBM). METHODS: Cognitively normal (CN; n = 344) and mildly cognitively impaired (MCI; n = 224) Alzheimer's Disease Neuroimaging Initiative Phase 3 participants with good quality 3-T magnetic resonance imaging were included. Structural (regional gray matter [GM] density) and functional NBM integrity (functional connectivity [FC]) were compared between those on AC medication for > 1 year (AC+ ) and those without (AC- ) in each condition. AC burden was classed as mild, moderate, or severe. RESULTS: MCI AC+ participants (0.55 ± 0.03) showed lower NBM GM density compared to MCI AC- participants (0.56 ± 0.03, p = 0.002), but there was no structural AC effect in CN. NBM FC was lower in CN AC+ versus CN AC- (3.6 ± 0.5 vs. 3.9 ± 0.6, p = 0.001), and in MCI AC+ versus MCI AC- (3.3 ± 0.2 vs. 3.7 ± 0.5, p < 0.001), with larger effect size in MCI. NBM FC partially mediated the association between AC medication burden and cognition. CONCLUSIONS: Our findings provide novel support for a detrimental effect of mild AC medication on the forebrain cholinergic system characterized as functional central hypocholinergic that partially mediated AC-related cognitive impairment. Moreover, structural tissue damage suggests neurodegeneration, and larger effect sizes in MCI point to enhanced susceptibility for AC medication in those at risk of dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Núcleo Basal de Meynert/patologia , Colinérgicos , Antagonistas Colinérgicos/efeitos adversos , Disfunção Cognitiva/patologia , Humanos , Imageamento por Ressonância Magnética
12.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771016

RESUMO

Arsenic (As) poisoning is widespread due to exposure to pollution. The toxic level of (As) causes oxidative stress-induced aging and tissue damage. Since melatonin (MLT) has anti-oxidant and anti-aging properties, we aimed to evaluate the protective effect of MLT against the toxicity of sodium arsenite (NaAsO2). Healthy male NMRI mice were divided into eight different groups. The control group received a standard regular diet. Other groups were treated with varying diets, including MLT alone, NaAsO2, and NaAsO2 plus MLT. After one month of treatment, biochemical and pathological tests were performed on blood, heart, and lung tissue samples. NaAsO2 increased the levels of TNF-α, 8-hydroxy-2-deoxy guanosine (8OHdG), malondialdehyde (MDA), reactive oxygen species (ROS), and high mobility group box 1 (HMGB1), increased the expression of TNF receptor type 1-associated death domain (TRADD) mRNA and telomerase reverse transcriptase, and decreased the expression of Klotho (KL) mRNA in both plasma and tissues. In contrast, MLT reduced MDA, ROS, HMGB1, lactate, and TNF-α enhanced the mRNA expression of KL, and suppressed the mRNA expression of the TERT and TRADD genes. Thus, MLT confers potent protection against NaAsO2- induced tissue injury and oxidative stress.


Assuntos
Envelhecimento/efeitos dos fármacos , Arsenitos/antagonistas & inibidores , Melatonina/farmacologia , Compostos de Sódio/antagonistas & inibidores , Animais , Arsenitos/farmacologia , Masculino , Camundongos , Compostos de Sódio/farmacologia
13.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34282732

RESUMO

Rice is one of the most important cereals of the world, with a substantial amount of genetic variation, and a staple food for more than half of the world's population. Salinity is the second most important abiotic stress after drought that adversely affects rice production globally. Both the seedling and reproductive stages are extremely sensitive to salinity but tolerant at the reproductive stage which is most crucial, as it translates into grain yield. Therefore, it is more important to identify the underlying factors of tolerance at the reproductive stage as a necessary step towards improving varieties for salinity environments. However, because of the difficulties in phenotyping protocols of salinity tolerance screening at the reproductive stage, only a few studies exist on this aspect. In view of this, a study involving 188 F4 rice lines derived from a cross CSR28 × Sadri along with the parents was carried out for phenotyping using a novel screening approach for the reproductive stage in salinity conditions and genotyping by SNP markers (Infinium Illumina 6K SNP chip) to construct a high-saturation linkage map. Quantitative trait loci analysis in an F4 population for physiological traits (chlorophyll a, chlorophyll b and carotenoid) and agronomic traits (plant height, filled grain number, grain yield and spikelet fertility percentage) led to the identification of 14 QTLs with an LOD range of 2.72-4.46 explaining phenotypic variation of 5.29-24.86% on chromosomes 1, 2, 3, 5, 6, 7 and 8. Tolerant alleles were contributed by both CSR28 and Sadri. The results indicated that both physiological and agronomic traits were involved in salinity tolerance at the reproductive stage and majority of the QTLs identified in this study are reported for the first time.


Assuntos
Oryza/genética , Locos de Características Quantitativas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Alelos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Genótipo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Plântula/genética
14.
J Biomech ; 119: 110319, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636462

RESUMO

Robotic limb design struggles to combine energy efficiency with human-like levels of movement versatility. High efficiency and a range of angles and torques are characteristics of human hopping at different frequencies. Humans use muscles in combination with tendons to achieve the required joint actuation. Therefore, we consider whether appropriately tuned series elastic actuators (SEAs) placed at the leg joints can be used to reduce the functional gap between robots and humans. Human hip, knee, and ankle biomechanics were recorded over a range of hopping frequencies to extract joint angles and torques, which were used as an input to a mechanical simulation SEA model. This model was used to optimize the SEA stiffness of each joint to either minimize peak power or energy requirements. This work investigated the relationship between hopping frequency and SEA stiffness, the utility of using SEAs at each joint, and the reasons behind humans' preferred hopping frequency. Although the constant stiffness values across different hopping frequencies are suitable for the knee and the ankle, a variable serial elastic actuator stiffness could still further reduce energy requirements. Optimal SEA stiffness was found to reduce peak power requirements by up to 73% at the ankle and up to 66% at the knee, with greatest benefits found around the preferred frequency. However, no SEA benefits were found for the hip and above the preferred hopping frequency for the knee. These insights could be used to aid in the design of robotic and assistive devices to achieve versatile and energy efficient human-like movements.


Assuntos
Articulação do Tornozelo , Movimento , Tornozelo , Fenômenos Biomecânicos , Humanos , Articulação do Joelho
15.
BMC Plant Biol ; 20(1): 427, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933479

RESUMO

BACKGROUND: Proso millet is a highly nutritious cereal considered an essential component of processed foods. It is also recognized with high water-use efficiency as well as short growing seasons. This research was primarily aimed at investigating the genetic diversity among genotypes based on evaluating those important traits proposed in previous researches under both normal and salinity- stress conditions. Use of Amplified fragment length polymorphism (AFLP) molecular markers as well as evaluating the association between markers and the investigated traits under both conditions was also another purpose of this research. RESULTS: According to the phenotypic correlation coefficients, the seed yield had the highest correlation with the forage and biological yields under both conditions. By disintegrating those traits investigated under normal and salinity-stress conditions into principal component analysis, it was found that the first four principal components justified more than 59.94 and 62.48% of the whole variance, respectively. The dendrogram obtained by cluster analysis displayed three groups of genotypes under both normal and salinity- stress conditions. Then, association analyses were conducted on 143 proso millet genotypes and 15 agronomic traits as well as 514 polymorphic AFLP markers (out of 866 created bands) generated by 11 primer combinations (out of the initial 20 primer combinations) EcoRI/MseI. The results obtained by mixed linear model (MLM) indicated that under normal conditions, the M14/E10-45 and M14/E10-60 markers had strong associations with seed yield. A similar trend was also observed for M14/E10-45 and M14/E11-44 markers in relation to forage yield. On the other hand, M14/E10-14, M14/E10-64 markers (for seed yield) and M14/E10-64 marker (for forage yield), had significant and stable association in all environments under salinity-stress conditions. Moreover, a number of markers showed considerable associations and stability under both normal and salinity stress conditions. CONCLUSIONS: According to the analysis of phenotypic data, the wide germplasm of Iranian proso millet has significant variation in terms of measured traits. It can be concluded that markers showing strong associations with traits under salinity-stress conditions are suitable candidates to be used in future marker-assisted selection (MAS) studies to improve salinity-resistance genotypes of Panicum miliaceum in arid and semiarid areas.


Assuntos
Células Germinativas Vegetais/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/genética , Panicum/metabolismo , Estresse Salino/genética , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Irã (Geográfico) , Polimorfismo Genético , Tolerância ao Sal/fisiologia
16.
Neuroimage ; 222: 117273, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818619

RESUMO

Mapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and brain connectivity. Atlas-based tractography protocols, i.e. a priori defined sets of masks and logical operations in a template space, have been commonly used in the adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results and grey matter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation.


Assuntos
Mapeamento Encefálico , Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Substância Branca/crescimento & desenvolvimento
17.
Funct Integr Genomics ; 19(1): 13-28, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29931612

RESUMO

Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.


Assuntos
Aegilops/genética , Tolerância ao Sal/genética , Transcriptoma , Aegilops/metabolismo
18.
J Cell Physiol ; 234(2): 1099-1110, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070704

RESUMO

MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.


Assuntos
MicroRNAs/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/genética , Transdução de Sinais , Hipóxia Tumoral , Microambiente Tumoral
19.
Photoacoustics ; 10: 1-19, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29511627

RESUMO

Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.

20.
Photosynth Res ; 136(3): 357-369, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29230609

RESUMO

Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poaceae/genética , Cloreto de Sódio/farmacologia , Triticum/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Cloroplastos/fisiologia , Éxons/genética , Perfilação da Expressão Gênica , Genes de Cloroplastos/genética , Íntrons/genética , Oxirredução , Fotossíntese/fisiologia , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Edição de RNA , Splicing de RNA , Estresse Fisiológico , Triticum/efeitos dos fármacos , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA