Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Appl Genet ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031267

RESUMO

Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065765

RESUMO

This study utilized Aspergillus flavus to produce selenium nanoparticles (Se-NPs) in an environmentally friendly and ecologically sustainable manner, targeting several medicinal applications. These biosynthesized Se-NPs were meticulously characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), and UV-visible spectroscopy (UV), revealing their spherical shape and size ranging between 28 and 78 nm. We conducted further testing of Se-NPs to evaluate their potential for biological applications, including antiviral, anticancer, antibacterial, antioxidant, and antibiofilm activities. The results indicate that biosynthesized Se-NPs could be effective against various pathogens, including Salmonella typhimurium (ATCC 14028), Bacillus pumilus (ATCC 14884), Staphylococcus aureus (ATCC 6538), Clostridium sporogenes (ATCC 19404), Escherichia coli (ATCC 8739), and Bacillus subtilis (ATCC 6633). Additionally, the biosynthesized Se-NPs exhibited anticancer activity against three cell lines: pancreatic carcinoma (PANC1), cervical cancer (Hela), and colorectal adenocarcinoma (Caco-2), with IC50 values of 177, 208, and 216 µg/mL, respectively. The nanoparticles demonstrated antiviral activity against HSV-1 and HAV, achieving inhibition rates of 66.4% and 15.1%, respectively, at the maximum non-toxic concentration, while also displaying antibiofilm and antioxidant properties. In conclusion, the biosynthesized Se-NPs by A. flavus present a promising avenue for various biomedical applications with safe usage.

3.
J Med Case Rep ; 18(1): 269, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835078

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION: A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS: Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.


Assuntos
Leucemia Mieloide Aguda , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Criança , Proteína Fosfatase 1/genética , Proteínas de Fusão Oncogênica/genética
4.
Iran J Microbiol ; 14(4): 445-457, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36721510

RESUMO

Background and Objectives: Uropathogenic Escherichia coli (UPEC) is divided into different phylogenetic groups that differ in their antibiotic resistance patterns, serogroups and pathogenicity. This study aimed to investigate the prevalence of phylogenetic groups of UPEC isolates and their relationship with serogroups and virulence factors in patients with UTIs. Materials and Methods: Of the 412 urine samples tested a total of 150 UPEC were isolated and confirmed with PCR using 16S rRNA gene. Antibiotic resistance of the isolates was tested using disk diffusion method and the isolates were divided into phylogenetic groups by the quadruplex PCR method. The prevalence of serogroups and virulence genes were investigated using multiplex PCR. Results: 87 (58%) of the isolates belonged to phylogroup B2. Virulence genes fimH (95.3%), aer (49.3%) and serogroups O8 (22.3%), O25 (21.5%) showed the highest prevalence. The lowest drug resistance was observed against imipenem (4.6%) and meropenem (3.3%). The prevalence of multidrug-resistant and extended-spectrum beta-lactamases isolates were 60% and 61.3%, respectively. We also found a significant relationship between phylogenetic groups, serogroups and virulence factors among our isolates. Conclusion: The high abundance of phylogenetic group B2, serogroups O8 and O25, and virulence genes fimH and aer indicate their importance in the pathogenesis of UPEC in this country.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA