Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15262, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961116

RESUMO

Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).


Assuntos
Adjuvantes Imunológicos , Galinhas , Quitosana , Nanopartículas , Doenças das Aves Domésticas , Animais , Galinhas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Nanopartículas/química , Quitosana/química , Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Dióxido de Silício/química , Adjuvantes de Vacinas , Polímeros/química , Portadores de Fármacos/química , Pasteurellaceae/imunologia
2.
J Immunol Methods ; 506: 113280, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577101

RESUMO

Nanovaccine is a revolutionary type of immunizations for various diseases that is simple to manufacture and administer. As a result, we are working to develop innovative nanovaccines against E. coli, which is capable of causing disease both inside and outside of its predilection sites, causing respiratory and systemic disease (colibacillosis).Colibacillosis is a global disease that significantly affects poultry production. The present study aims to evaluate in vivo cell-mediated immunity against a chitosan-nanovaccine from E. coli serogroups O1 and O78 to aid in limiting colibacillosis in chicken. Two hundred specific pathogen-free (SPF) three weeks old broiler chickens were used and divided into five groups: the first group inoculated with the outer membrane and flagellar antigen (OF), the second group inoculated with chitosan capsulated-outer membrane protein-flagellar antigen (CSC-O-F), the third group inoculated with chitosan loaded-outer membrane protein-flagellar antigen (CSL-O-F), the fourth group was vaccinated with (CSL-O-F-M) adjuvanted with Montanide ISA 71 RVG, and the fifth group was left as unvaccinated control. The immune response was measured by ELISA, lymphocyte proliferation test, and challenge test. The duration of immunity was also studied. The CSL-O-F-M had the highest antibody titer in an ELISA test using the O1 strain, and the CSC-O-F had the highest antibody titer in an ELISA test using the O78 strain. For both O1 and O78 strains, the CSL-O-F-M had the strongest cell-mediated immune response, which was validated by the challenge test and duration study. We recommend producing nanovaccines (CSL-O-F-M) from E.coli O1 and O78 strains as a new manufacturing vaccine based on the demonstrated results. Because it produces highly effective humoral and cell-mediated immune responses, this novel vaccine may be useful in reducing the risk of colibacillosis.


Assuntos
Quitosana , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas , Escherichia coli , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunidade Celular , Proteínas de Membrana , Óleo Mineral , Doenças das Aves Domésticas/prevenção & controle
3.
Int J Biol Macromol ; 167: 395-404, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275976

RESUMO

Colibacillosis disease has an important economic impact on poultry production worldwide. It is one of the most common causes of mortality in commercial layer and breeder chickens. Avian pathogenic Escherichia coli (APEC) is the main cause of this disease. Nanoparticles have been widely used in vaccine design as both adjuvants and antigen delivery vehicles. The present study aimed to produce an efficient vaccine from E. coli serogroups O1 and O78 to help in controlling colibacillosis in chicken using two forms of chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles. Nanovaccines has been prepared through loading and encapsulation of outer membrane and flagellar antigen on CS and AsCS nanoparticles with loading efficiency 86, 63,55, 48% for CS-loaded-, Cs-capsulated-, AsCS-loaded- and AsCS-capsulated-E. coli Antigen, respectively. Two hundred specific pathogens free (SPF) 3-weeks old broiler chickens were used and divided into four groups to investigate the immune response of nanovaccines. The immune response was measured by the microagglutination, ELISA, and challenge test. From results, it could be concluded that generally adding chitosan NPs is capable of improving vaccine efficacy via the induction of strong immunity. Moreover, we recommend the production of the nanovaccine CS-capsulated -antigen from E. coli O1 and O78 serotypes to be used as a potent vaccine to aid in controlling colibacillosis. Also, the ascorbate chitosan is a great alternate for the initiation of a potent immune response in critical infection cases.


Assuntos
Galinhas/imunologia , Quitosana/química , Infecções por Escherichia coli/veterinária , Vacinas contra Escherichia coli/administração & dosagem , Escherichia coli/imunologia , Nanopartículas/química , Doenças das Aves Domésticas/prevenção & controle , Testes de Aglutinação , Animais , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Fenômenos Químicos , Vacinas contra Escherichia coli/imunologia , Imunidade , Imunidade Humoral , Nanotecnologia , Doenças das Aves Domésticas/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Int J Vet Sci Med ; 5(1): 23-29, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30255044

RESUMO

Corynebacterium pseudotuberculosis is the etiological agent of chronic caseous lymphadenitis. The bacterium infects goats and sheep causing great economic loss worldwide annually. The present work aims to evaluate the efficiency of gold nanoparticles (AuNPs) and AuNPs - laser combined therapy as antibacterial approaches against C. pseudotuberculosis bacteria in vitro. Gold nanoparticles 25 nm were synthesized by co-precipitation method and characterized by different techniques including; Transmission Electron Microscope (TEM), X-ray Diffraction and Dynamic Light Scattering. Three concentrations of AuNPs (50, 100 and 200 µg/mL) were utilized for estimating the bacterial growth rate and the Minimum Inhibitory Concentration (MIC). The mechanism of interaction between AuNPs and bacteria was evaluated by transmission electron microscopic image analysis. Confocal Laser Scanning Microscopic technique was used to study the cytotoxic action of AuNPs and laser against C. psudotuberculosis. Results revealed that MIC of AuNPs and AuNPs - laser combined therapy were 200 µg/mL and 100 µg/mL respectively. TEM image analysis illustrated that gold nanoparticles penetrated the thick wall of C. psudotuberculosis and accumulated as intracellular agglomerates. Laser light enhanced the antimicrobial activity of gold nanoparticles by at least one fold due to its photo thermal combined effect that might be used as an effective antibacterial approach against C. pseudotuberculosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA