Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167235, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38744343

RESUMO

Follicular ovarian cysts (FOCs) are characterized by follicles in the ovaries that are >20 mm in diameter and persist for >10 days without the corpus luteum, leading to anovulation, dysregulation of folliculogenesis and subfertility in humans and livestock species. Despite their clinical significance, the precise impact of FOCs on oocyte reserve, maturation, and quality still needs to be explored. While FOCs are observed in both human and livestock populations, they are notably prevalent in livestock species. Consequently, livestock species serve as valuable models for investigating the molecular intricacies of FOCs. Thus, in this study, using goat FOCs, we performed integrated proteomic, metabolomic and functional analyses to demonstrate that oocyte maturation is hampered due to increased reactive oxygen species (ROS) in FOCs follicular fluid (FF) via downregulation of glutathione peroxidase (GPX1), a critical antioxidant seleno enzyme required to negate oxidative stress. Notably, GPX1 reduction was positively correlated with the FF's decline of free selenium and selenocysteine metabolic enzymes, O-phosphoryl-tRNA (Sec) selenium transferase (SEPSECS) and selenocysteine lyase (SCLY) levels. Adding GPX1, selenocysteine, or selenium to the culture media rescued the oocyte maturation abnormalities caused by FOCs FF by down-regulating the ROS. Additionally, we demonstrate that substituting GPX1 regulator, Insulin-like growth factor-I (IGF-1) in the in vitro maturation media improved the oocyte maturation in the cystic FF by down-regulating the ROS activity via suppressing Non-sense-mediated decay (NMD) of GPX1. In contrast, inhibition of IGF-1R and the target of rapamycin complex 1 (mTORC1) hampered the oocyte maturation via NMD up-regulation. These findings imply that the GPX1 regulation via selenocysteine metabolism and the IGF-1-mediated NMD may be critical for the redox homeostasis of FF. We propose that GPX1 enhancers hold promise as therapeutics for enhancing the competence of FOCs oocytes. However, further in vivo studies are necessary to validate these findings observed in vitro.


Assuntos
Líquido Folicular , Glutationa Peroxidase GPX1 , Homeostase , Fator de Crescimento Insulin-Like I , Cistos Ovarianos , Oxirredução , Selenocisteína , Feminino , Líquido Folicular/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Cistos Ovarianos/metabolismo , Cistos Ovarianos/patologia , Selenocisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cabras , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Oócitos/metabolismo , Humanos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Proteômica/métodos
2.
Cell Death Discov ; 10(1): 104, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418811

RESUMO

Death is the fate of postovulatory aged or unfertilized oocytes (POAO) in many animals. However, precise molecular mechanisms are yet to be discovered. Here, we demonstrate that increased amounts of reactive oxygen species (ROS), calcium ion (Ca+2) channels, and retrotransposon activity induce apoptosis, which in turn causes POAO death. Notably, suppression of ROS, Ca+2 channels, and retrotransposons delayed POAO death. Further, we found that the histone H4K12 and K16 acetylation increased via downregulation of NAD+ and NAD+ -dependent histone deacetylase SIRT3. Furthermore, adding NMN, sodium pyruvate, or CD38 inhibition delayed the death of postovulatory aged oocytes. Finally, we demonstrate the conservation of retrotransposon-induced DNA damage-dependent POAO death in higher-order vertebrates. Our findings suggest that POAO mortality is caused by cyclic cascade metabolic interactions in which low NAD+ levels increase histone acetylation by inhibiting histone deacetylases, resulting in an increase in retrotransposons, ROS, and Ca+2 channel activity and thus contributing to DNA damage-induced apoptosis.

3.
J Cell Physiol ; 239(4): e31201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284481

RESUMO

Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.


Assuntos
Histonas , Prófase Meiótica I , Processamento de Proteína Pós-Traducional , Espermatócitos , Animais , Masculino , Camundongos , Cromatina/genética , Heterocromatina , Histonas/metabolismo , Meiose , Espermatócitos/citologia , Espermatócitos/metabolismo
4.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415018

RESUMO

Mammalian oocytes can be very long-lived cells and thereby are very likely to encounter DNA damage during their lifetime. Defective DNA repair may result in oocytes that are developmentally incompetent or give rise to progeny with congenital disorders. During oocyte maturation, damaged DNA is repaired primarily by non-homologous end joining (NHEJ) or homologous recombination (HR). Although these repair pathways have been studied extensively, the associated DNA synthesis is poorly characterized. Here, using porcine oocytes, we demonstrate that the DNA synthesis machinery is present during oocyte maturation and dynamically recruited to sites of DNA damage. DNA polymerase δ is identified as being crucial for oocyte DNA synthesis. Furthermore, inhibiting synthesis causes DNA damage to accumulate and delays the progression of oocyte maturation. Importantly, inhibition of the spindle assembly checkpoint (SAC) bypassed the delay of oocyte maturation caused by DNA synthesis inhibition. Finally, we found that ∼20% of unperturbed oocytes experienced spontaneously arising damage during maturation. Cumulatively, our findings indicate that oocyte maturation requires damage-associated DNA synthesis that is monitored by the SAC. This article has an associated First Person interview with the first author of the paper.


Assuntos
Oócitos , Oogênese , Animais , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA , Humanos , Meiose , Oogênese/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA