Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(46): e202301503, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235813

RESUMO

Chemical modification of small molecules is a key step for the development of pharmaceuticals. S-adenosyl-l-methionine (SAM) analogues are used by methyltransferases (MTs) to transfer alkyl, allyl and benzyl moieties chemo-, stereo- and regioselectively onto nucleophilic substrates, enabling an enzymatic way for specific derivatisation of a wide range of molecules. l-Methionine analogues are required for the synthesis of SAM analogues. Most of these are not commercially available. In nature, O-acetyl-l-homoserine sulfhydrolases (OAHS) catalyse the synthesis of l-methionine from O-acetyl-l-homoserine or l-homocysteine, and methyl mercaptan. Here, we investigated the substrate scope of ScOAHS from Saccharomyces cerevisiae for the production of l-methionine analogues from l-homocysteine and organic thiols. The promiscuous enzyme was used to synthesise nine different l-methionine analogues with modifications on the thioether residue up to a conversion of 75 %. ScOAHS was combined with an established MT dependent three-enzyme alkylation cascade, allowing transfer of in total seven moieties onto two MT substrates. For ethylation, conversion was nearly doubled with the new four-enzyme cascade, indicating a beneficial effect of the in situ production of l-methionine analogues with ScOAHS.


Assuntos
Metionina , Metiltransferases , Metiltransferases/metabolismo , Homosserina , S-Adenosilmetionina/química , Alquilação , Catálise , Homocisteína
2.
Chembiochem ; 24(9): e202300133, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36942622

RESUMO

S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.


Assuntos
Biomimética , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Biocatálise , Alquilação , Metilação , Metiltransferases/metabolismo
3.
Angew Chem Int Ed Engl ; 61(49): e202213338, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36214476

RESUMO

Regulation of enzyme activity is vital for living organisms. In metalloenzymes, far-reaching rearrangements of the protein scaffold are generally required to tune the metal cofactor's properties by allosteric regulation. Here structural analysis of hydroxyketoacid aldolase from Sphingomonas wittichii RW1 (SwHKA) revealed a dynamic movement of the metal cofactor between two coordination spheres without protein scaffold rearrangements. In its resting state configuration (M2+ R ), the metal constitutes an integral part of the dimer interface within the overall hexameric assembly, but sterical constraints do not allow for substrate binding. Conversely, a second coordination sphere constitutes the catalytically active state (M2+ A ) at 2.4 Šdistance. Bidentate coordination of a ketoacid substrate to M2+ A affords the overall lowest energy complex, which drives the transition from M2+ R to M2+ A . While not described earlier, this type of regulation may be widespread and largely overlooked due to low occupancy of some of its states in protein crystal structures.


Assuntos
Metaloproteínas , Metaloproteínas/química , Metais , Frutose-Bifosfato Aldolase/metabolismo , Regulação Alostérica
4.
J Biol Chem ; 297(1): 100820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029589

RESUMO

CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3',5'-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network-based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Família Multigênica , Polifosfatos/metabolismo , Adenilil Ciclases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Íons , Modelos Moleculares , Multimerização Proteica , Especificidade por Substrato , Sulfolobus acidocaldarius/enzimologia , Água
5.
Chembiochem ; 20(8): 1019-1022, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30549179

RESUMO

Polyphosphate kinases (PPKs) are involved in many metabolic processes; enzymes of the second family (PPK2) are responsible for nucleotide synthesis fuelled by the consumption of inorganic polyphosphate. They catalyse the phosphorylation of nucleotides with various numbers of phosphate residues, such as monophosphates or diphosphates. Hence, these enzymes are promising candidates for cofactor regeneration systems. Besides adenosine 5'-triphosphate, PPK2s also catalyse the synthesis of highly phosphorylated nucleotides in vitro, as shown here for adenosine 5'-tetraphosphate and adenosine 5'-pentaphosphate. These unusually phosphorylated adenosine 5'-polyphosphates add up to 50 % of the whole adenosine nucleotides in the assay. The two new products were chemically synthesised to serve as standards and compared with the two enzymatically produced compounds by high-performance ion chromatography and 31 P NMR analysis. This study shows that PPK2s are highly suitable for biocatalytic synthesis of different phosphorylated nucleotides.


Assuntos
Monofosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Monofosfato de Adenosina/química , Catálise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA