Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(4): 600-606, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485272

RESUMO

Because of the limited axial field of view of conventional PET scanners, the internal carotid arteries are commonly used to obtain an image-derived input function (IDIF) in quantitative brain PET. However, time-activity curves extracted from the internal carotids are prone to partial-volume effects due to the limited PET resolution. This study aimed to assess the use of the internal carotids for quantifying brain glucose metabolism before and after partial-volume correction. Methods: Dynamic [18F]FDG images were acquired on a 106-cm-long PET scanner, and quantification was performed with a 2-tissue-compartment model and Patlak analysis using an IDIF extracted from the internal carotids. An IDIF extracted from the ascending aorta was used as ground truth. Results: The internal carotid IDIF underestimated the area under the curve by 37% compared with the ascending aorta IDIF, leading to Ki values approximately 17% higher. After partial-volume correction, the mean relative Ki differences calculated with the ascending aorta and internal carotid IDIFs dropped to 7.5% and 0.05%, when using a 2-tissue-compartment model and Patlak analysis, respectively. However, microparameters (K 1, k 2, k 3) derived from the corrected internal carotid curve differed significantly from those obtained using the ascending aorta. Conclusion: These results suggest that partial-volume-corrected internal carotids may be used to estimate Ki but not kinetic microparameters. Further validation in a larger patient cohort with more variable kinetics is needed for more definitive conclusions.


Assuntos
Artéria Carótida Interna , Tomografia por Emissão de Pósitrons , Humanos , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Artérias Carótidas/diagnóstico por imagem
2.
Cancers (Basel) ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958347

RESUMO

The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.

3.
J Nucl Med ; 64(11): 1815-1820, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536740

RESUMO

The purpose of this study was to quantify any differences between the SUVs of 89Zr immuno-PET scans obtained using a PET/CT system with a long axial field of view (LAFOV; Biograph Vision Quadra) compared to a PET/CT system with a short axial field of view (SAFOV; Biograph Vision) and to evaluate how LAFOV PET scan duration affects image noise and SUV metrics. Methods: Five metastatic breast cancer patients were scanned consecutively on SAFOV and LAFOV PET/CT scanners. Four additional patients were scanned using only LAFOV PET/CT. Scans on both systems lasted approximately 30 min and were acquired 4 d after injection of 37 MBq of 89Zr-trastuzumab. LAFOV list-mode data were reprocessed to obtain images acquired using shorter scan durations (15, 10, 7.5, 5, and 3 min). Volumes of interest were placed in healthy tissues, and tumors were segmented semiautomatically to compare coefficients of variation and to perform Bland-Altman analysis on SUV metrics (SUVmax, SUVpeak, and SUVmean). Results: Using 30-min images, 2 commonly used lesion SUV metrics were higher for SAFOV than for LAFOV PET (SUVmax, 16.2% ± 13.4%, and SUVpeak, 10.1% ± 7.2%), whereas the SUVmean of healthy tissues showed minimal differences (0.7% ± 5.8%). Coefficients of variation in the liver derived from 30-min SAFOV PET were between those of 3- and 5-min LAFOV PET. The smallest SUVmax and SUVpeak differences between SAFOV and LAFOV were found for 3-min LAFOV PET. Conclusion: LAFOV 89Zr immuno-PET showed a lower SUVmax and SUVpeak than SAFOV because of lower image noise. LAFOV PET scan duration may be reduced at the expense of increasing image noise and bias in SUV metrics. Nevertheless, SUVpeak showed only minimal bias when reducing scan duration from 30 to 10 min.


Assuntos
Neoplasias da Mama , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Trastuzumab , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem
4.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 41-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37397180

RESUMO

The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.1 × 15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100-µm thick plastic layers and 52% for 50 µm, the coincidence time resolution (CTR) distribution improved to 204 ± 49 and 220 ± 41 ps, respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On an NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast-to-noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA