Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(33): 13782-13794, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39101436

RESUMO

The preparation of synthetic (Zr,U)SiO4 solid solution is challenging, as the conventional high-temperature solid-state method limits the solubility of uranium (4 ± 1 mol%) in the orthosilicate phase due to its thermodynamic instability. However, these compounds are of great interest as a result of (Zr,U)SiO4 solid solutions, with uranium contents exceeding this concentration, being observed as corium phases formed during nuclear accidents. It has been identified that hydrothermal synthesis pathways can be used for the formation of the metastable phase, such as USiO4. The investigation carried out in this study has indeed led to the confirmation of metastable (Zr,U)SiO4 compounds with high uranium contents being formed. It was found that (Zr,U)SiO4 forms a close-to-ideal solid solution with uranium loading of up to 60 mol% by means of hydrothermal treatment for 7 days at 250 °C, at pH = 3 and starting from an equimolar reactant concentration equal to 0.2 mol L-1. A purification procedure was developed to obtain pure silicate compounds. After purification, these compounds were found to be stable up to 1000 °C under an inert atmosphere (argon). The characterisation methods used to explore the synthesis and thermal stability included powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and Raman spectroscopies, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).

2.
Chem Commun (Camb) ; 60(49): 6260-6263, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38722108

RESUMO

Although hydrogen peroxide (H2O2) has been highly used in nuclear chemistry for more than 75 years, the preparation and literature description of tetravalent actinide peroxides remain surprisingly scarce. A new insight is given in this topic through the synthesis and thorough structural characterization of a new peroxo compound of Pu(IV).

3.
Inorg Chem ; 63(1): 400-415, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150742

RESUMO

Chelation of lanthanide and actinide cations within a suitable macrocyclic ligand often results in a rigid, kinetically inert, and thermodynamically stable complex. A benchmark for such cation-ligand suitability are cyclen-derived macrocyclic ligands, frequently used as large cation hosts for various applications. Herein, a comprehensive study of the 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane ligand (DOTAM) chelates of UIV and CeIII and their properties in aqueous solutions is presented. By employing multiple analysis techniques, including X-ray crystallography, UV-vis absorbance, 1H NMR, UPLC-MS, cyclic voltammetry, and differential pulse voltammetry, the study has revealed that the two aqueous complexes undergo a spontaneous, gradual, and stepwise hydrolysis of each of the coordinated amides toward carboxylates. The coordination of UIV in the studied reaction has been shown to significantly enhance the reaction rate, leading to an acceleration of up to 6 orders of magnitude compared to the natural process of simple aqueous amides at room temperature. An attempt to describe the unusual chelated metal cation amide-activation feature, based on the relatively lower rigidity of the complex structure, is presented. Additionally, the electrochemical properties of the complex series are discussed in detail, along with the limitations of the analytical methods employed.

4.
Dalton Trans ; 52(29): 10023-10037, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37408368

RESUMO

Although ZrSiO4 is the most well-known compound in the zircon-structured family (space group I41/amd), the experimental conditions for preparing pure and well-crystallized phases that are doped with a tetravalent element via hydrothermal synthesis have never been clearly discussed in the literature. With the aim to answer this question, the experimental conditions of the preparation of ZrSiO4 and (Zr,Ce)SiO4 were investigated in order to synthesize well-crystallized and pure phases. A multiparametric study has been carried out using soft hydrothermal conditions with variables including reactant concentration, initial pH of the reactive medium, and duration of the hydrothermal treatment. Pure ZrSiO4 was obtained through hydrothermal treatment for 7 days at 250 °C, within a large acidity range (1.0 ≤ pH ≤ 9.0) and starting from CSi ≈ CZr ≥ 0.2 mol L-1. As hydrothermally prepared zircon structured phases can be both hydrated and hydroxylated, its annealed form was also studied after heating to 1000 °C. Based on these results, the synthesis of (Zr,Ce)SiO4 solid solutions was also investigated. The optimal hydrothermal conditions to acquire pure and crystallized phases were as follows: 7 days at 250 °C with initial pH = 1 and concentration of the reactants equal to 0.2 mol L-1. This led to Zr1-xCexSiO4 solid solutions with the incorporated Ce content up to 40 mol%. Samples were characterized using multiple methods, including laboratory and synchrotron PXRD, IR and Raman spectroscopies, SEM, and TGA. Moreover, it was found that these phases were thermally stable in air up to at least 1000 °C.

5.
Inorg Chem ; 62(21): 8334-8346, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37184364

RESUMO

Due to its presence in the nuclear industry and its strong radiotoxicity, plutonium is an actinide of major interest in the event of internal contamination. To improve the understanding of its mechanisms of transport and accumulation in the body, the complexation of Pu(IV) to the most common protein calcium-binding motif found in cells, the EF-hand motif of calmodulin, was investigated. Visible and X-ray absorption spectroscopies (XAS) in solution made it possible to investigate the speciation of plutonium at physiological pH (pH 7.4) and pH 6 in two variants of the calmodulin Ca-binding site I and using Pu(IV) in different media: carbonate, chloride, or nitrate solutions. Three different species of Pu were identified in the samples, with formation of 1:1 Pu(IV):calmodulin peptide complexes, Pu(IV) reduction, and formation of peptide-mediated Pu(IV) hexanuclear cluster.


Assuntos
Plutônio , Plutônio/química , Calmodulina , Oxirredução , Cálcio , Sítios de Ligação
6.
Dalton Trans ; 52(7): 2135-2144, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722900

RESUMO

Actinide colloids and nanoparticles (NPs) currently constitute a topic of strong interest due to their potential role in advanced nuclear energetics and the environmental migration of radioactivity. A better understanding of the physico-chemical properties of nanoscale actinide oxides requires robust synthesis approaches. In this work, UO2+x NPs were successfully prepared by sonochemistry from U(IV) solutions previously stabilised in a hydrochloric medium (20 kHz, 65 °C, Ar/(10%)CO). Colloidal suspensions were found to be composed of crystalline and spherical NPs showing a UO2-like structure and measuring 18.0 ± 0.1 nm (SAXS, HR-TEM and PXRD techniques). In comparison with the controlled hydrolysis approach used as a reference, sonochemistry appears to be a simple and original synthesis route providing larger, better defined and more crystalline UO2+x NPs with a narrower size distribution. These well-defined NPs offer new opportunities for the preparation of reference actinide materials devoted to fundamental, technological and environmental studies.

7.
Nanoscale Adv ; 4(23): 4938-4971, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504736

RESUMO

Due to the increased attention given to actinide nanomaterials, the question of their structure-property relationship is on the spotlight of recent publications. Plutonium oxide (PuO2) particularly plays a central role in nuclear energetics and a comprehensive knowledge about its properties when nanosizing is of paramount interest to understand its behaviour in environmental migration schemes but also for the development of advanced nuclear energy systems underway. The element plutonium further stimulates the curiosity of scientists due to the unique physical and chemical properties it exhibits around the periodic table. PuO2 crystallizes in the fluorite structure of the face-centered cubic system for which the properties can be significantly affected when shrinking. Identifying the formation mechanism of PuO2 nanoparticles, their related atomic, electronic and crystalline structures, and their reactivity in addition to their nanoscale properties, appears to be a fascinating and challenging ongoing topic, whose recent advances are discussed in this review.

8.
Chem Commun (Camb) ; 58(94): 13147-13150, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36349890

RESUMO

New insights are provided about the formation mechanism of PuO2 nanoparticles (NPs) by investigating an unprecedented kinetic isotope effect observed during their hydrolytic synthesis in H2O or D2O and attributed to OH/OD zero point energy difference. The signature of a Pu(IV) oxo-hydroxo hexanuclear cluster, appearing as an important intermediate during the formation of the 2 nm PuO2 NPs (synchrotron SAXS/XAS), is further revealed indicating that their formation is controlled by H-transfer reactions occurring during hydroxo to oxo-bridge conversions.

9.
Chemistry ; 28(61): e202201868, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102009

RESUMO

The coordination and redox chemistry of aqueous CeIV/III macrocyclic compounds were studied by using the ligands DOTA and DOTP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid), respectively). The hydrolysis tendency of the tetravalent cation in the presence of DOTA is shown to result in the formation of a highly ordered, fluorite-like [CeIV 6 (O)4 (OH)4 (H2 O)8 (DOTAH)4 ] oxo-hydroxo structure both in solution and in the solid state. The lifetime of the analogous species formed in the presence of DOTP was found to be much shorter. Spectroscopic measurements of the latter suggest its similarity to the former. Its gradual decomposition in solution leads to the accumulation of the in-cage complexes [CeIV DOTP] and [CeIII DOTP(H2 O)], which were crystallographically characterized in this study. The redox energetics and spectroscopic characteristics for the transition between these two in-cage complexes in aqueous solutions were studied as well. Together with the crystallographic structures of the above-mentioned species, the in-cage [CeIV DOTA(H2 O)] complex structure is presented herein for the first time. An elaborative analysis of the X-ray crystallographic structural data obtained for the in-cage complexes studied herein and similar structures published previously suggests that hard-bonding cyclen-derived ligands are, counter-intuitively, better suited for encapsulating, and perhaps kinetically stabilize softer cations than harder ones with DOTP, marked as a possible adequate chelator for the study of the aqueous properties of LnII and AcIII cations.

10.
Inorg Chem ; 61(34): 13462-13470, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35977097

RESUMO

The Pourbaix diagram of an element displays its stable chemical forms with respect to the redox potential and pH of the solution, whose knowledge is fundamental for understanding and anticipating the chemistry of the element in a specified solution. Unlike most halogens, the Pourbaix diagram in the aqueous phase for astatine (At, Z = 85) is still under construction. In particular, the predominant domains of two astatine species assumed to exist under alkaline conditions, At- and AtO(OH)2-, need to be refined. Through high-performance ion-exchange chromatography, electromobility measurements, and competition experiments, the existence of At- and AtO(OH)2- has been confirmed and the associated standard potential has been determined for the first time (0.86 ± 0.05 V vs the standard hydrogen electrode). On the basis of these results, a revised version of astatine's Pourbaix diagram is proposed, covering the three oxidation states of astatine that exist in the thermodynamic stability range of water: At(-I), At(I), and At(III) (as At-, At+, AtO+, AtO(OH), and AtO(OH)2-).

11.
Inorg Chem ; 61(27): 10329-10341, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35749686

RESUMO

Actinide +IV complexes (AnIV = ThIV, UIV, NpIV, and PuIV) with two dipicolinic acid derivatives (DPA and Et-DPA) have been studied by 1H and 13C NMR spectroscopies and first-principles calculations. The Fermi contact and dipolar contributions to the actinide-induced shifts (AIS) are evaluated from a temperature dependence analysis, combined with ab initio results. It allows an experimental estimation of the axial anisotropy of the magnetic susceptibility Δχax and of the hyperfine coupling constants of the NMR-active nuclei. Due to the compactness of the coordination sphere, the magnetic anisotropy of the paramagnetic center is small, and this makes the contact contribution to be the dominant one, even on the remote atoms. The sign of the hyperfine coupling constants and related spin densities is alternating on the nuclei of the ligand cycle, denoting a preponderant spin polarization mechanism. This is well reproduced by unrestricted density functional theory (DFT) calculations. Those values are furthermore slightly decreasing in the actinide series, which indicates a small decrease of the covalency from UIV to PuIV.

12.
Dalton Trans ; 51(17): 6976-6977, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383801

RESUMO

Correction for 'Formation of plutonium(IV) silicate species in very alkaline reactive media' by Paul Estevenon et al., Dalton Trans., 2021, 50, 12528-12536, DOI: 10.1039/D1DT02248B.

13.
Inorg Chem ; 61(12): 4806-4817, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35289606

RESUMO

A new hexanuclear plutonium cluster has been stabilized in aqueous media with acetate ligands. To probe the formation of such a complex structure, visible-near infrared (vis-NIR) absorption spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) were combined. The presence of Pu6O4(OH)4(CH3COO)12 species in solution was first detected by vis-NIR and EXAFS spectroscopy. To confirm unambiguously this structure, EXAFS spectra were simulated from ab initio calculations. Debye-Waller factors and structural parameters were derived from DFT calculations. A large number of 5f electrons were treated as valence or core electrons using small- and large-core relativistic effective pseudopotentials. It is possible to reproduce accurately the EXAFS spectrum of the octahedral hexamer cluster at both levels of calculations. Further DFT and EXAFS calculations were performed on clusters of lower or higher nuclearities and of different geometries using the 5f-core approximation. The result shows that trimer, tetramer, flat hexamer, and even 16-mer clusters exhibit different EXAFS patterns and confirm the very specific octahedral hexanuclear EXAFS signature.

14.
J Synchrotron Radiat ; 29(Pt 1): 1-10, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985417

RESUMO

A spectroelectrochemical setup has been developed to investigate radioactive elements in small volumes (0.7 to 2 ml) under oxidation-reduction (redox) controlled conditions by X-ray absorption spectroscopy (XAS). The cell design is presented together with in situ XAS measurements performed during neptunium redox reactions. Cycling experiments on the NpO22+/NpO2+ redox couple were applied to qualify the cell electrodynamics using XANES measurements and its ability to probe modifications in the neptunyl hydration shell in a 1 mol l-1 HNO3 solution. The XAS results are in agreement with previous structural studies and the NpO22+/NpO2+ standard potential, determined using Nernst methods, is consistent with measurements based on other techniques. Subsequently, the NpO2+, NpO22+ and Np4+ ion structures in solution were stabilized and measured using EXAFS. The resulting fit parameters are again compared with other results from the literature and with theoretical models in order to evaluate how this spectroelectrochemistry experiment succeeds or fails to stabilize the oxidation states of actinides. The experiment succeeded in: (i) implementing a robust and safe XAS device to investigate unstable radioactive species, (ii) evaluate in a reproducible manner the NpO22+/NpO2+ standard potential under dilute conditions and (iii) clarify mechanistic aspects of the actinyl hydration sphere in solution. In contrast, a detailed comparison of EXAFS fit parameters shows that this method is less appropriate than the majority of the previously reported chemical methods for the stabilization of the Np4+ ion.

15.
Free Radic Biol Med ; 180: 134-142, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34973364

RESUMO

The mechanism of reaction of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) with ·CH3, CH3O2· and ·OH radicals were studied. The radicals were formed in situ radiolytically. The methyl radicals react orders of magnitude slower with DOTA and with MIII(DOTA)- than the hydroxyl radicals. The various final products were identified and mechanisms for their formation are proposed. CH3O2· radicals do not react, or react too slowly to be observed, with DOTA and with MIII(DOTA)- as long as the central cation is not oxidized by the peroxyl radical. The results imply that synthesis of the MIII(DOTA)-(MIII = radioisotope) complexes in a water-organic solvent (ethanol or 2-propanol or acetonitrile) mixture is not only kinetically desired but the so formed complex also decreases the radiolytic decomposition of DOTA.


Assuntos
Quelantes , Radical Hidroxila , Diagnóstico por Imagem , Radicais Livres , Compostos Heterocíclicos com 1 Anel , Peróxidos
16.
Dalton Trans ; 50(36): 12528-12536, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545888

RESUMO

Studying the speciation of Pu(IV) in very alkaline and silicate ion rich reactive media allowed identification of the formation of plutonium(IV)-silicate colloidal suspensions which were stable for months. These colloids were stabilized in aqueous solution for pH > 13 and for concentrations around 10-2 mol L-1. Successive filtration processes allowed evaluation of their size, which was found to be smaller than 6 nm. Their structural characterization by XAS evidenced that their structure was similar to those identified for the other tetravalent actinide-silicate colloidal systems like thorium, uranium and neptunium. Their formation could explain the increase of plutonium solubility usually observed in alkaline silicate-rich solutions and could affect the plutonium mobility as a result in contaminated sites or in other environmental permeable media.

17.
Dalton Trans ; 50(33): 11498-11511, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34346448

RESUMO

Under oxidizing conditions, the corrosion of spent nuclear fuel may lead to the leaching of radionuclides including soluble uranyl-based species. The speciation of the generated chemical forms is complex and the related potential formation of colloidal species appears surprisingly poorly reported in the literature. Their formation could however contribute significantly to the mobility of radionuclides in the environment. A better knowledge in the speciation and reactivity of these species appears particularly relevant. This study describes the preparation and characterization of intrinsic uranium(vi) colloids from amorphous and crystalline UO3 in pure water assisted by 20 kHz ultrasound. In the presence of carbon monoxide preventing the sonochemical formation of hydrogen peroxide, ultrasonic treatment boosts the conversion of UO3 powder into (meta-)schoepite precipitates and yields very stable and notably concentrated uranium(vi) nanoparticles in the liquid phase. Using HR-TEM, SAXS and XAS techniques, we confirmed that the colloidal suspension is composed of quasi-spherical nanoparticles measuring ca. 3.8 ± 0.3 nm and exhibiting a schoepite-like crystallographic structure. The proposed method demonstrates the possible formation of environmentally relevant U(vi) colloidal nanoparticles appearing particularly interesting for the preparation of reference systems in the absence of added ions and capping agents.

18.
Chemistry ; 27(54): 13624-13631, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34245056

RESUMO

[H7 O3 ]4 [Tc20 O68 ] ⋅ 4H2 O [1] was prepared from an aqueous Tc2 O7 solution concentrated over anhydrous H2 SO4 . [Tc20 O68 ]4- is the first polyanionic species to be reported for Tc. The unit cell contains one centrosymmetric [Tc20 O68 ]4- polyanion as well as hydronium ions and water molecules. The core of the structure consists of four Tc(V)O6 octahedra that form a square Tc4 O4 ring. The four Tc(V)O6 octahedra are decorated by sixteen Tc(VII)O4 tetrahedra. Calculations show the bonding within the Tc4 O4 ring to consist of a 3-center bond formed between each neighboring pair of Tc atoms and their bridging oxygen. Calculations also indicate that a strong d→d electronic transition at 513 nm is the origin of the red color of [1]. The characterization of red HTcO4 solutions by X-ray absorption spectroscopy has complemented the description of this compound in aqueous solution. The formation mechanisms in solution, including the possible role of technetium's radioactivity in the formation of [1], are discussed.

19.
Chemistry ; 27(32): 8264-8267, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822408

RESUMO

Two new aqueous UIV complexes were synthesized by the interaction between the tetravalent uranium cation and the (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP) macrocyclic ligand. Two distinct homonuclear complexes were identified; the first was characterized by X-ray crystallography as a unique "out-of-cage", [U(DOTPH6 )2 ] complex, in which the UIV cation is octa-coordinated to 4 phosphonic arms from each ligand in a square anti-prism geometry, with a C4 symmetry. The second is the "in-cage" [U(DOTPH4 )] complex, in which the tetravalent cation is located between the macrocycle O4 and N4 planes. With the help of UV-Vis absorption, 1 H/31 P NMR, ATR-IR, and MALDI-TOFMS analytical techniques, the chemical interchange between both species is presented. It is shown that the one-way transition is governed by the formation of a multiple number of soluble oligomeric species consisting of varied stoichiometric ratios of both characterized homonuclear complexes.

20.
J Phys Chem B ; 125(15): 3843-3849, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33650867

RESUMO

The excess electron in solution is a highly reactive radical involved in various radiation-induced reactions. Its solvation state critically determines the subsequent pathway and rate of transfer. For instance, water plays a dominating role in the electron-induced dealkylation of n-tributyl phosphate in actinide extraction processing. However, the underlying electron solvation processes in such systems are lacking. Herein, we directly observed the solvation dynamics of electrons in H-bonded water and n-tributyl phosphate (TBP) binary solutions with a mole fraction of water (Xw) varying from 0.05 to 0.51 under ambient conditions. Following the evolution of the absorption spectrum of trapped electrons (not fully solvated) with picosecond resolution, we show that electrons statistically distributed would undergo preferential solvation within water molecules extracted in TBP. We determine the time scale of excess electron full solvation from the deconvoluted transient absorption-kinetical data. The process of solvent reorganization accelerates by increasing the water molar fraction, and the rate of this process is 2 orders of magnitude slower compared to bulk water. We assigned the solvation process to hydrogen network reorientation induced by a negative charge of the excess electron that strongly depends on the local water environment. Our findings suggest that water significantly stabilizes the electron in a deeper potential than the pure TBP case. In its new state, the electron is likely to inhibit the dealkylation of extractants in actinide separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA