Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(8): 2657-2662, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39149112

RESUMO

Malaria is one of the "big three" global infectious diseases, having caused above two hundred million cases and over half a million deaths in 2020. The continuous demand for new treatment options prioritizes the cost-effective development of new chemical entities with multi-stage antiplasmodial activity, for higher efficacy and lower propensity to elicit drug-resistant parasite strains. Following up on our long-term research towards the rescue of classical antimalarial aminoquinolines like chloroquine and primaquine, we have developed new organic salts by acid-base pairing of those drugs with natural bile acids. These antimalarial drug-derived bile salts were screened in vitro against the hepatic, blood and gametocyte stages of Plasmodium parasites, unveiling chloroquine bile salts as unprecedented triple-stage antiplasmodial hits. These findings pave a new pathway for drug rescuing, even beyond anti-malarial and other anti-infective drugs.

3.
Front Cell Infect Microbiol ; 13: 1307553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156320

RESUMO

Coronavirus disease 2019 (COVID-19) and malaria, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium parasites, respectively, share geographical distribution in regions where the latter disease is endemic, leading to the emergence of co-infections between the two pathogens. Thus far, epidemiologic studies and case reports have yielded insufficient data on the reciprocal impact of the two pathogens on either infection and related diseases. We established novel co-infection models to address this issue experimentally, employing either human angiotensin-converting enzyme 2 (hACE2)-expressing or wild-type mice, in combination with human- or mouse-infective variants of SARS-CoV-2, and the P. berghei rodent malaria parasite. We now show that a primary infection by a viral variant that causes a severe disease phenotype partially impairs a subsequent liver infection by the malaria parasite. Additionally, exposure to an attenuated viral variant modulates subsequent immune responses and provides protection from severe malaria-associated outcomes when a blood stage P. berghei infection was established. Our findings unveil a hitherto unknown host-mediated virus-parasite interaction that could have relevant implications for disease management and control in malaria-endemic regions. This work may contribute to the development of other models of concomitant infection between Plasmodium and respiratory viruses, expediting further research on co-infections that lead to complex disease presentations.


Assuntos
COVID-19 , Coinfecção , Malária , Humanos , Camundongos , Animais , SARS-CoV-2 , COVID-19/complicações , Roedores , Coinfecção/complicações , Malária/parasitologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA