Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(7): 2145-2157, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475551

RESUMO

The natural 13 C abundance (δ13 C) in plant leaves has been used for decades with great success in agronomy to monitor water-use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope-based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13 C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr ), and the respiration use efficiency-to-HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13 C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.


Assuntos
Melhoramento Vegetal , Triticum , Carbono , Isótopos de Carbono , Grão Comestível , Folhas de Planta/genética , Triticum/genética
2.
Sci Rep ; 9(1): 20173, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882883

RESUMO

Hybrid wheat (Triticum spp.) has the potential to boost yields and enhance production under changing climates to feed the growing global population. Production of hybrid wheat seed relies on male sterility, the blocking of pollen production, to prevent self-pollination. One method of preventing self-pollination in the female plants is to apply a chemical hybridizing agent (CHA). However, some combinations of CHA and genotypes have lower levels of sterility, resulting in decreased hybrid purity. Differences in CHA efficacy are a challenge in producing hybrid wheat lines for commercial and experimental use. Our primary research questions were to estimate the levels of sterility for wheat genotypes treated with a CHA and determine the best way to analyze differences. We applied the CHA sintofen (1-(4-chlorphyl)-1,4-dihydro-5-(2-methoxyethoxy)-4-oxocinnoline-3-carboxylic acid; Croisor 100) to 27 genotypes in replicate. After spraying, we counted seed in bagged female heads to evaluate CHA efficacy and CHA-by-genotype interaction. Using logit and probit models with a threshold of 7 seeds, we found differences among genotypes in 2015. Sterility was higher in 2016 and fewer genotypic differences were found. When CHA-induced sterilization is less uniform as in 2015, zero-inflated and hurdle count models were superior to standard mixed models. These models calculate mean seed number and fit data with limit-bounded scales collected by agronomists and plant breeders to compare genotypic differences. These analyses can assist in selecting parents and identifying where additional optimization of CHA application needs to occur. There is little work in the literature examining the relationship between CHAs and genotypes, making this work fundamental to the future of hybrid wheat breeding.


Assuntos
Vigor Híbrido/genética , Hibridização Genética , Triticum/genética , Algoritmos , Genótipo , Modelos Genéticos , Modelos Estatísticos , Melhoramento Vegetal , Pólen , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA