Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 217: 173388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447158

RESUMO

Age-related cognitive decline and disruptions in circadian rhythms are growing problems as the average human life span increases. Multiple strains of the senescence-accelerated mouse (SAM) show reduced life span, and the SAMP8 strain in particular has been well documented to show cognitive deficits in behavior as well as a bimodal pattern of circadian locomotor activity. However, little is known about circadian regulation within the hippocampus of these strains of mice. Here we test the hypothesis that in this early senescence model, disruption of the molecular circadian clock in SAMP8 animals drives disrupted behavior and physiology. We found normal rhythms in PER2 protein expression in the SCN of SAMP8 animals at 4 months, despite the presence of disrupted wheel-running activity rhythms at this age. Interestingly, a significant rhythm in PER2 expression was not observed in the hippocampus of SAMP8 animals, despite a significant 24-h rhythm in SAMR1 controls. We also examined time-restricted feeding as a potential strategy to rescue disrupted hippocampal plasticity. Time-restricted feeding increased long-term potentiation at Schaffer collateral-CA1 synapses in SAMP8 mice (compared to SAMR1 controls). Overall, we confirm disrupted circadian locomotor rhythms in this early senescence model (as early as 4 months) and discovered that this disruption is not due to arrhythmic PER2 levels in the SCN; however, other extra-SCN circadian oscillators (i.e., hippocampus) are likely impaired with accelerated aging.


Assuntos
Ritmo Circadiano , Hipocampo , Envelhecimento/fisiologia , Animais , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Potenciação de Longa Duração , Masculino , Camundongos
2.
Neurobiol Dis ; 158: 105454, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333153

RESUMO

Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Memória Espacial , Transmissão Sináptica , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Antagonistas GABAérgicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais , Receptor PAR-2/biossíntese , Receptor PAR-2/genética
3.
Neurobiol Learn Mem ; 160: 151-159, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611883

RESUMO

Circadian rhythms greatly influence 24-h variation in cognition in nearly all organisms, including humans. Circadian clock impairment and sleep disruption are detrimental to hippocampus-dependent memory and negatively influence the acquisition and recall of learned behaviors. The circadian clock can become out of sync with the environment during circadian misalignment. Shift work represents a real-world model of circadian misalignment that can be studied for its physiological implications. The present study aimed to test the hypothesis that circadian misalignment disrupts vigilance and cognitive performance on occupationally relevant tasks using shift work as a model. As such, we sought to (1) explore the general effects of night- and day-shift worker schedules on sleep-wake parameters and core body temperature (CBT) phase, and (2) determine whether shift-type and CBT phase impact cognitive performance and vigilance at the end of a 12-h shift. We observed a sample of day-shift and night-shift hospital nurses over a 10-day period. At the end of three, consecutive, 12-h shifts (7 pm-7am or 7am-7 pm), participants completed a cognitive battery assessing vigilance, cognitive throughput, and medication calculation fluency (via an investigator developed and tested metric). Night-shift nurses exhibited significantly greater sleep fragmentation as well as a greater disparity between their wake-time and time of CBT minimum compared to day-shift nurses. Night-shift nurses exhibited significantly slower cognitive proficiency at the end of their shifts, even after adjustment for CBT phase. These results suggest that circadian disruption and reduced sleep quality both contribute to cognitive functioning and performance.


Assuntos
Atenção/fisiologia , Temperatura Corporal/fisiologia , Transtornos Cronobiológicos/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Recursos Humanos de Enfermagem Hospitalar , Desempenho Psicomotor/fisiologia , Jornada de Trabalho em Turnos/efeitos adversos , Privação do Sono/fisiopatologia , Sono/fisiologia , Pensamento/fisiologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA