Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 672: 236-243, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38838631

RESUMO

This study reports the development of a photocatalytic electrochemical aptasensor for the purpose of detecting chloramphenicol (CAP) antibiotic residues in water by utilizing SYBR Green I (SG) and chemically exfoliated MoS2 (ce-MoS2) as synergistically signal-amplification platforms. The Au nanoparticles (AuNPs) were electrodeposited onto the surface of an indium tin oxide (ITO) electrode. After that, the thiolate-modified cDNA, also known as capture DNA, was combined with the aptamer. Subsequently, photosensitized SG molecules and ce-MoS2 nanomaterial were inserted into the groove of the resultant double-stranded DNA (dsDNA). The activation of the photocatalytic process upon exposure to light resulted in the generation of singlet oxygen. The singlet oxygen effectively split the dsDNA, resulting in significant enhancement in the current of [Fe(CN)6]3-/4-. When the CAP was present, both SG molecules and ce-MoS2 broke away from the dsDNA, which turned off the photosensitization response, leading to significant reduction in the current of [Fe(CN)6]3-/4-. Under the optimal conditions, the aptasensor exhibited a linear relationship between the current of [Fe(CN)6]3-/4- with logarithmic concentrations of CAP from 20 to 1000 nM, with a detection of limit (3σ) of 3.391 nM. The aptasensor also demonstrated good selectivity towards CAP in the presence of interfering antibiotics, such as tetracycline, streptomycin, levofloxacin, ciprofloxacin, and sulfadimethoxine. Additionally, the results obtained from the analysis of natural water samples using the proposed aptasensor were consistent with the findings acquired through the use of a liquid chromatograph-mass spectrometer. Therefore, with its simplicity and high selectivity, this aptasensor can potentially detect alternative antibiotics in environmental water samples by replacing the aptamers based on photosensitization.

2.
Anal Chim Acta ; 1314: 342669, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876510

RESUMO

BACKGROUND: The evaluation of particle-bound mercury (PBM) exposure is a crucial aspect of assessing the global cycle of mercury (Hg) and its adverse effects on human health and ecosystems. Nevertheless, the precise and reliable measurement of PBM remains a formidable task because of the costly and cumbersome equipment required, as well as the inadequate sensitivities exhibited by current analytical techniques. In this study, we provided a unique and straightforward approach utilising filter fiber-assisted matrix solid-phase dispersion (FF-MSPD) in conjunction with single-drop solution electrode discharge-induced cold vapor generation atomic fluorescence spectrometry (SD-SEGD-CVG-AFS) for the precise quantification of PBM. The PBM contained in a small filter was efficiently extracted with 200 µL of eluent (0.2 % L-cysteine and 4 % HCOOH) by FF-MSPD and subsequently converted to Hg0 using SD-SEGD-CVG, before being subjected to examination using AFS. RESULTS: The resulted limit of detection (LOD, 3σ) was 0.17 pg m-3, obtained with a sample volume of 12 m3, which was much higher than that of the techniques published in the literatures. The aforementioned technique was effectively utilised for the detection of mercury in 19 samples of PM2.5 and PM10 which were collected over a span of several months. SIGNIFFCANCE: Contrast to conventional methods, the proposed method offers a range of distinct advantages, including simplified operation, absence of memory effects, enhanced sensitivity, substantial reduction in reagent usage, and decreased secondary pollution. These advantages are particularly valuable for advancing research on the fate, transport, and exposure routes of environmental mercury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA