Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11E510, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910648

RESUMO

An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 µm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 1020 cm-3 while a 3ω probe will be used for plasma densities of ∼1 × 1019 cm-3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

2.
Rev Sci Instrum ; 87(11): 11E549, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910656

RESUMO

The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA