Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(4): e0012124, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38456699

RESUMO

Hydrothermal plumes are an important yet understudied component of deep-sea microbial ecosystems. We report metagenome-assembled genomes (MAGs) of three Bacteria belonging to the Gammaproteobacterial SUP05 cluster (family Thioglobaceae), assembled from the metagenomes of two non-buoyant hydrothermal plumes in the ultraslow spreading Gakkel Ridge.

2.
Microorganisms ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375074

RESUMO

The area around the Antarctic Peninsula (AP) is facing rapid climatic and environmental changes, with so far unknown impacts on the benthic microbial communities of the continental shelves. In this study, we investigated the impact of contrasting sea ice cover on microbial community compositions in surface sediments from five stations along the eastern shelf of the AP using 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods are characterized by a prevailing ferruginous zone, whereas a comparatively broad upper oxic zone is present at the heavily ice-covered station. Low ice cover stations were highly dominated by microbial communities of Desulfobacterota (mostly Sva1033, Desulfobacteria, and Desulfobulbia), Myxococcota, and Sva0485, whereas Gammaproteobacteria, Alphaproteobacteria, Bacteroidota, and NB1-j prevail at the heavy ice cover station. In the ferruginous zone, Sva1033 was the dominant member of Desulfuromonadales for all stations and, along with eleven other taxa, showed significant positive correlations with dissolved Fe concentrations, suggesting a significant role in iron reduction or an ecological relationship with iron reducers. Our results indicate that sea ice cover and its effect on organic carbon fluxes are the major drivers for changes in benthic microbial communities, favoring potential iron reducers at stations with increased organic matter fluxes.

3.
Nat Microbiol ; 8(4): 651-665, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894632

RESUMO

Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.


Assuntos
Microbiota , Água do Mar , Água do Mar/microbiologia , Bactérias/genética , Hidrogênio/metabolismo , Oxigênio/metabolismo
4.
Integr Environ Assess Manag ; 18(3): 682-696, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34677903

RESUMO

Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed >2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of "serious harm" to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success. Integr Environ Assess Manag 2022;18:682-696. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Biodiversidade , Ecossistema , Metais , Mineração
5.
Front Microbiol ; 12: 637526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664723

RESUMO

Microbial communities of the Arctic Ocean are poorly characterized in comparison to other aquatic environments as to their horizontal, vertical, and temporal turnover. Yet, recent studies showed that the Arctic marine ecosystem harbors unique microbial community members that are adapted to harsh environmental conditions, such as near-freezing temperatures and extreme seasonality. The gene for the small ribosomal subunit (16S rRNA) is commonly used to study the taxonomic composition of microbial communities in their natural environment. Several primer sets for this marker gene have been extensively tested across various sample sets, but these typically originated from low-latitude environments. An explicit evaluation of primer-set performances in representing the microbial communities of the Arctic Ocean is currently lacking. To select a suitable primer set for studying microbiomes of various Arctic marine habitats (sea ice, surface water, marine snow, deep ocean basin, and deep-sea sediment), we have conducted a performance comparison between two widely used primer sets, targeting different hypervariable regions of the 16S rRNA gene (V3-V4 and V4-V5). We observed that both primer sets were highly similar in representing the total microbial community composition down to genus rank, which was also confirmed independently by subgroup-specific catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) counts. Each primer set revealed higher internal diversity within certain bacterial taxonomic groups (e.g., the class Bacteroidia by V3-V4, and the phylum Planctomycetes by V4-V5). However, the V4-V5 primer set provides concurrent coverage of the archaeal domain, a relevant component comprising 10-20% of the community in Arctic deep waters and the sediment. Although both primer sets perform similarly, we suggest the use of the V4-V5 primer set for the integration of both bacterial and archaeal community dynamics in the Arctic marine environment.

6.
Front Microbiol ; 10: 665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024475

RESUMO

Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their impact on the diversity and connectivity of benthic deep-sea microbial assemblages is poorly understood, especially for hydrothermally inactive, magma-starved ridges. We investigated bacterial and archaeal diversity in sediments collected from an amagmatic segment (10°-17°E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern and southern abyssal zones of similar water depths within one biogeochemical province of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA) gene sequencing. Our results show significant differences in microbial communities between stations outside and inside the SWIR, which were mostly explained by environmental selection. Community similarity correlated significantly with differences in chlorophyll a content and with the presence of upward porewater fluxes carrying reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource availability is a main driver for changes in microbial community composition. At the stations in the SWIR axial valley (3,655-4,448 m water depth), microbial communities were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota) and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations outside the SWIR communities (3,760-4,869 m water depth) were dominated by OM1 clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow spreading ridges create a unique environmental setting in sedimented segments without distinct hydrothermal activity, and play an important role in shaping microbial communities and promoting diversity, but also in connectivity among deep-sea habitats.

7.
Mar Environ Res ; 144: 213-229, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30709637

RESUMO

One of the options to mitigate atmospheric CO2 increase is CO2 Capture and Storage in sub-seabed geological formations. Since predicting long-term storage security is difficult, different CO2 leakage scenarios and impacts on marine ecosystems require evaluation. Submarine CO2 vents may serve as natural analogues and allow studying the effects of CO2 leakage in a holistic approach. At the study site east of Basiluzzo Islet off Panarea Island (Italy), gas emissions (90-99% CO2) occur at moderate flows (80-120 L m-2 h-1). We investigated the effects of acidified porewater conditions (pHT range: 5.5-7.7) on the diversity of benthic bacteria and invertebrates by sampling natural sediments in three subsequent years and by performing a transplantation experiment with a duration of one year, respectively. Both multiple years and one year of exposure to acidified porewater conditions reduced the number of benthic bacterial operational taxonomic units and invertebrate species diversity by 30-80%. Reduced biodiversity at the vent sites increased the temporal variability in bacterial and nematode community biomass, abundance and composition. While the release from CO2 exposure resulted in a full recovery of nematode species diversity within one year, bacterial diversity remained affected. Overall our findings showed that seawater acidification, induced by seafloor CO2 emissions, was responsible for loss of diversity across different size-classes of benthic organisms, which reduced community stability with potential relapses on ecosystem resilience.


Assuntos
Biodiversidade , Dióxido de Carbono/química , Monitoramento Ambiental , Areia , Água do Mar/química , Animais , Organismos Aquáticos , Ecossistema , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Itália , Mar Mediterrâneo
8.
Curr Microbiol ; 75(9): 1147-1155, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29766233

RESUMO

The environmental factors controlling the abundance of Bacteria and Archaea in lagoon ecosystems are poorly understood. Here, an integrated physico-chemical, biogeochemical, and microbiological survey was applied in the Sacca di Goro lagoon (Po River Delta, Italy) to investigate the variation of bacterial and archaeal abundance, as assessed by Fluorescence In Situ Hybridization, along winter and summer environmental gradients. We hypothesised that bacterial and archaeal cells respond differentially to physico-chemical parameters of the sediment, which can be manifested in variations of total cells number. Our results suggest that Archaea are an important component of microbial communities (up to 20%) and they are also quite constant along the sediment depth investigated, while Bacteria tend to decrease in the subsurface sediments. The abiotic (i.e. temperature, ammonium, pH) and trophic parameters (i.e. chlorophyll a) explain differentially the variations of bacterial and archaeal distribution, and raise interesting questions about the ecological significance of the microbial composition in this area.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Meio Ambiente , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Áreas Alagadas , Archaea/citologia , Bactérias/citologia , Biodiversidade , Microbiologia Ambiental , Hibridização in Situ Fluorescente , Itália , Região do Mediterrâneo , Estações do Ano
9.
Sci Adv ; 4(2): eaao2040, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441359

RESUMO

Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m-2 hour-1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2.


Assuntos
Dióxido de Carbono/química , Ecossistema , Sedimentos Geológicos/química , Animais , Bactérias/metabolismo , Cadeia Alimentar , Invertebrados/fisiologia , Itália , Oxigênio/análise , Porosidade , Água/química
10.
PLoS One ; 12(8): e0181531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792960

RESUMO

The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanica shoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters.


Assuntos
Alismatales/metabolismo , Carbonato de Cálcio/análise , Dióxido de Carbono/análise , Fontes Hidrotermais/química , Oxigênio/análise , Água do Mar/química , Ecossistema , Concentração de Íons de Hidrogênio , Itália , Oceanos e Mares
11.
Sci Adv ; 2(4): e1500961, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27386507

RESUMO

Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Ecossistema , Biodiversidade , Biomassa , Mudança Climática , Sedimentos Geológicos , Água do Mar/microbiologia , Temperatura
12.
PLoS One ; 8(8): e72996, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039667

RESUMO

The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Ecossistema , Sedimentos Geológicos/microbiologia , Água do Mar , Oceano Atlântico , Biomassa , Meio Ambiente , Geografia , Mar Mediterrâneo
13.
Curr Microbiol ; 64(3): 242-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22159570

RESUMO

The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat-both abiotic environmental setting and sedimentary organic matter quality-explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.


Assuntos
Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Hibridização in Situ Fluorescente/métodos , Biodiversidade , Contagem de Células/métodos , Sondas de Oligonucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA