Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38920682

RESUMO

Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.


Assuntos
Tonsila do Cerebelo , Epigênese Genética , Neuralgia , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Animais , Masculino , Ratos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Metilação de DNA/genética , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/fisiopatologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
2.
J Vis Exp ; (206)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647281

RESUMO

Organoid cell culture systems can recapitulate the complexity observed in tissues, making them useful in studying host-pathogen interactions, evaluating drug efficacy and toxicity, and tissue bioengineering. However, applying these models for the described reasons may be limited because of the three-dimensional (3D) nature of these models. For example, using 3D enteroid culture systems to study digestive diseases is challenging due to the inaccessibility of the intestinal lumen and its secreted substances. Indeed, stimulation of 3D organoids with pathogens requires either luminal microinjection, mechanical disruption of the 3D structure, or generation of apical-out enteroids. Moreover, these organoids cannot be co-cultured with immune and stromal cells, limiting in-depth mechanistic analysis into pathophysiological dynamics. To circumvent this, we optimized a bovine primary cell two-dimensional (2D) enteroid-derived monolayer culture system, allowing co-culture with other relevant cell types. Ileal crypts isolated from healthy adult cattle were cultured to generate 3D organoids that were cryopreserved for future use. A 2D monolayer was created using revived 3D enteroids that were passaged and disrupted to yield single cells, which were seeded on basement membrane extract-coated transwell cell culture inserts, thereby exposing their apical surface. The intestinal monolayer polarity, cellular differentiation, and barrier function were characterized using immunofluorescence microscopy and measuring transepithelial electrical resistance. Stimulation of the apical surface of the monolayer revealed the expected functionality of the monolayer, as demonstrated by cytokine secretion from both apical and basal compartments. The described 2D enteroid-derived monolayer model holds great promise in investigating host-pathogen interactions and intestinal physiology, drug development, and regenerative medicine.


Assuntos
Organoides , Animais , Bovinos , Organoides/citologia , Pesquisa Translacional Biomédica/métodos , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Íleo/citologia
3.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614200

RESUMO

Breast cancer (BC) is primarily triggered by estrogens, especially 17ß-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERß, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Aromatase/genética , Aromatase/metabolismo , Estradiol , Neoplasias Mamárias Animais/patologia , Camundongos Transgênicos , RNA Mensageiro/genética
4.
Biomedicines ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740335

RESUMO

Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17ß-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.

5.
Front Pharmacol ; 13: 823132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242036

RESUMO

Cannabinoid-based therapies are increasingly being used by cancer patients to treat chemotherapy-induced nausea and vomiting. Recently, cannabinoids have gained increased attention for their effects on cancer growth. Indeed, the effect of CB2 (JWH-015, JWH-133) agonists on breast cancer models have shown to reduce the size of breast cancer tumors. However, these studies assessing breast cancer progression were using CB2 agonist administered early into the cancer progression therefore assessing their effects on already established tumors is a critical need. In our study, we evaluate tumor growth using an ectopic xenograft ovarian (SKOV-3 and OVCAR-5) cancer model. The impact of chronic (30 days) administration of CB2 (JWH-133) agonist will be evaluated and started on 30 days of ectopic ovarian tumors. We will then evaluate and determine the mechanisms involved in ovarian cancer tumor growth by measuring levels of anandamide and 2-arachidonoyl glycerol as well as protein levels of CB1, CB2, ERα, ERß, GPER, TNFα, IL-1ß and IL-6 in ovarian and tumor tissues. Our results demonstrate a significant increase in ectopic ovarian tumor growth following chronic administration of JWH-133. Ovarian cancer tumor tissues chronically (30 days) treated with JWH-133 in comparison to vehicle treated groups showed an increase in endocannabinoid (AEA and 2-AG) and protein (CB2 and TNFα) levels with a decrease in GPER protein levels. Interestingly, our study emphasizes the importance of studying the impact of cannabinoid compounds on already established tumors to improve our understanding of cannabinoid-based therapies and, therefore better address clinical needs in cancer patients.

6.
Mol Cell Endocrinol ; 531: 111321, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992735

RESUMO

Estrogen signaling has been implicated in hormone-dependent breast cancer which constitutes >75% of breast cancer diagnosis and other malignancies. Aromatase, the key enzyme involved in the synthesis of estrogen, is often dysregulated in breast cancers. This has led to the administration of aromatase-inhibitors (AIs), commonly used for hormone-dependent breast cancers. Unfortunately, the increasing development of acquired resistance to the current AIs and modulators of estrogen receptors, following initial disease steadiness, has posed a serious clinical challenge in breast cancer treatment. In this review we highlight historical and recent advances on the transcriptional and post-translational regulation of aromatase in both physiological and pathological contexts. We also discuss the different drug combinations targeting various tumor promoting cell signaling pathways currently being developed and tested both in laboratory settings and in the clinic.


Assuntos
Inibidores da Aromatase/uso terapêutico , Aromatase/genética , Aromatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
7.
EMBO Rep ; 22(6): e50600, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860601

RESUMO

Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.


Assuntos
Neoplasias , Via de Sinalização Wnt , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Via de Sinalização Wnt/genética
8.
Mol Cell Biochem ; 476(6): 2449-2464, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33599895

RESUMO

The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.


Assuntos
Aromatase/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Animais , Aromatase/metabolismo , Inibidores da Aromatase/uso terapêutico , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
9.
Front Oncol ; 10: 576362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363010

RESUMO

Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.

10.
Sci Rep ; 10(1): 11696, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678115

RESUMO

Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Infecções por HIV/complicações , HIV-1/genética , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/complicações , Tropismo Viral/genética , Adulto , Animais , Fármacos Anti-HIV/uso terapêutico , Células Cultivadas , Estudos de Coortes , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Genótipo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Hipertensão Arterial Pulmonar/virologia , Artéria Pulmonar/citologia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Receptores CXCR4/metabolismo
11.
Sci Rep ; 9(1): 16257, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700102

RESUMO

Dishevelled (DVL) proteins are central mediators of the Wnt signalling pathway and are versatile regulators of several cellular processes, yet little is known about their post-translational regulation. Acetylation is a reversible post-translational modification (PTM) which regulates the function of several non-histone proteins involved in tumorigenesis. Since we previously demonstrated that lysine deacetylase, SIRT-1, regulates DVL protein levels and its function, we reasoned that DVL could potentially be a substrate for SIRT-1 mediated deacetylation. To further examine the potential role of multiple families of lysine deacetylases in the post-translational regulation of DVL, we screened for novel acetylation sites using liquid chromatography mass-spectrometry (LC-MS/MS) analysis. Herein, we report 12 DVL-1 lysine residues that show differential acetylation in response to changes in oxygen tension and deacetylase inhibition in triple-negative breast cancer (TNBC). PTMs are well documented to influence protein activity, and cellular localization. We also identify that acetylation of two key lysine residues, K69 and K285, present on the DIX and PDZ domains respectively, promote nuclear over cytoplasmic localization of DVL-1, and influences its promoter binding and regulation of genes implicated in cancer. Collectively, these findings for the first time, uncover acetylation as a novel layer of regulation of DVL-1 proteins.


Assuntos
Núcleo Celular/metabolismo , Proteínas Desgrenhadas/metabolismo , Lisina/metabolismo , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Aromatase/genética , Aromatase/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Oxigênio/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Neoplasias de Mama Triplo Negativas/patologia
12.
Biochem Biophys Res Commun ; 509(2): 476-482, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595381

RESUMO

Dysregulation of steroid biosynthesis has been implicated in the pathophysiology of a variety of cancers. One such common malignancy in women is breast cancer that is frequently promoted by estrogen overproduction. All steroid hormones are made from cholesterol, and the rate-limiting step in steroid biosynthesis is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Whereas the involvement of StAR in the regulation steroid hormone biosynthesis is well established, its association to breast cancer remains obscure. Herein, we report that estrogen receptor positive breast cancer cell lines (MCF7, MDA-MB-361, and T-47D) displayed aberrant high expression of the StAR protein, concomitant with 17ß-estradiol (E2) synthesis, when compared their levels with normal mammary epithelial (MCF10A and MCF12F) and triple negative breast cancer (MDA-MB-468, MDA-MB-231, and BT-549) cells. StAR was identified as a novel acetylated protein in MCF7 cells, in which liquid chromatography-tandem mass spectrometry analysis identified seven StAR acetyl lysine residues under basal and in response to histone deacetylase (HDAC) inhibition. A number of HDAC inhibitors were capable of diminishing StAR expression and E2 synthesis in MCF7 cells. The validity of StAR protein acetylation and its correlation to HDAC inhibition mediated steroid synthesis was demonstrated in adrenocortical tumor H295R cells. These findings provide novel insights that StAR protein is abundantly expressed in the most prevalent hormone sensitive breast cancer subtype, wherein inhibition of HDACs altered StAR acetylation patterns and decreased E2 levels, which may have important therapeutic implications in the prevention and treatment of this devastating disease.


Assuntos
Neoplasias da Mama/patologia , Fosfoproteínas/análise , Acetilação/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Estrogênios/análise , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Regulação para Cima/efeitos dos fármacos
13.
Oncotarget ; 9(86): 35639-35654, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30479694

RESUMO

The CYP19A1 gene encodes aromatase, an enzyme that converts androgens into estrogens and consequently directly contributes to both the depletion of androgens and the synthesis of estrogens in several organs. Aromatase is critical for diverse biological processes such as proliferation, regulation of fat metabolism and hormone signaling. Additionally, it is also overexpressed in diverse cancers and drives hormone-dependent tumor progression and increases 17-ß-estradiol (E2) within tumors and the tumor microenvironment. Although the inhibition of E2 production via aromatase inhibitors represents a major therapeutic paradigm in clinical oncology, fundamental questions regarding how cancer cells gain the capacity to overexpress aromatase remain unanswered. Multiple tissue-specific CYP19A1 promoters are known to be aberrantly active in tumors, yet how this occurs is unclear. Here, for the first time, we report that Dishevelled (DVL) proteins, which are key mediators of Wnt signaling, regulate aromatase expression in multiple breast cancer cell lines. We also report that DVL enters the nucleus and localizes to at least two different CYP19A1 promoters (pII and I.4) previously reported to drive overexpression in breast tumors and to a very distal CYP19A1 placental promoter (I.1) that remains poorly characterized. We go on to demonstrate that DVL-1 and DVL-3 loss of function leads to differential changes in various aromatase transcripts and in E2 production. The report, herein, uncovers a new regulator of CYP19A1 transcription and for the first time demonstrates that DVL, a critical mediator of WNT signaling, contributes to aberrant breast cancer-associated estrogen production.

14.
Mol Cancer Res ; 16(10): 1530-1542, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921733

RESUMO

Aromatase, a cytochrome P450 member, is a key enzyme involved in estrogen biosynthesis and is dysregulated in the majority of breast cancers. Studies have shown that lysine deacetylase inhibitors (KDI) decrease aromatase expression in cancer cells, yet many unknowns remain regarding the mechanism by which this occurs. However, advances have been made to clarify factors involved in the transcriptional regulation of the aromatase gene (CYP19A1). Yet, despite aromatase being a primary target for breast cancer therapy, its posttranslational regulation has been virtually unexplored. Acetylation is a posttranslational modification (PTM) known to alter the activity and stability of many oncoproteins, and given the role of KDIs in regulating aromatase expression, we postulate that aromatase acetylation acts as a novel posttranslational regulatory mechanism that impacts aromatase expression and/or activity in breast cancer. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that aromatase is basally acetylated on several lysine residues (108, 169, 242, 262, 334, 352, and 354) in MCF-7 cells, and treatment with a SIRT-1 inhibitor induced additional acetylation (376, 390, 440, and 448). These acetylated lysine residues are in regions critical for aromatase activity. Site-directed mutagenesis and overexpression studies demonstrated that K108R/Q or K440R/Q mutations significantly altered aromatase activity in breast cancer cells without altering its subcellular localization.Implications: These findings demonstrate a novel posttranslational regulation of aromatase and uncover novel anticancer effects of deacetylase inhibitors, thus providing new insight for ongoing development of deacetylase inhibitors as cancer therapeutics. Mol Cancer Res; 16(10); 1530-42. ©2018 AACR.


Assuntos
Aromatase/genética , Neoplasias da Mama/genética , Histona Desacetilases/genética , Sirtuína 1/genética , Acetilação/efeitos dos fármacos , Neoplasias da Mama/patologia , Cromatografia Líquida , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lisina/genética , Células MCF-7 , Processamento de Proteína Pós-Traducional , Sirtuína 1/antagonistas & inibidores , Espectrometria de Massas em Tandem
15.
J Thyroid Res ; 2016: 8765049, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989557

RESUMO

Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA