Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(6): e0032524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38700330

RESUMO

Global challenges presented by multidrug-resistant Acinetobacter baumannii infections have stimulated the development of new treatment strategies. We reported that outer membrane protein W (OmpW) is a potential therapeutic target in A. baumannii. Here, a library of 11,648 natural compounds was subjected to a primary screening using quantitative structure-activity relationship (QSAR) models generated from a ChEMBL data set with >7,000 compounds with their reported minimal inhibitory concentration (MIC) values against A. baumannii followed by a structure-based virtual screening against OmpW. In silico pharmacokinetic evaluation was conducted to assess the drug-likeness of these compounds. The ten highest-ranking compounds were found to bind with an energy score ranging from -7.8 to -7.0 kcal/mol where most of them belonged to curcuminoids. To validate these findings, one lead compound exhibiting promising binding stability as well as favorable pharmacokinetics properties, namely demethoxycurcumin, was tested against a panel of A. baumannii strains to determine its antibacterial activity using microdilution and time-kill curve assays. To validate whether the compound binds to the selected target, an OmpW-deficient mutant was studied and compared with the wild type. Our results demonstrate that demethoxycurcumin in monotherapy and in combination with colistin is active against all A. baumannii strains. Finally, the compound was found to significantly reduce the A. baumannii interaction with host cells, suggesting its anti-virulence properties. Collectively, this study demonstrates machine learning as a promising strategy for the discovery of curcuminoids as antimicrobial agents for combating A. baumannii infections. IMPORTANCE: Acinetobacter baumannii presents a severe global health threat, with alarming levels of antimicrobial resistance rates resulting in significant morbidity and mortality in the USA, ranging from 26% to 68%, as reported by the Centers for Disease Control and Prevention (CDC). To address this threat, novel strategies beyond traditional antibiotics are imperative. Computational approaches, such as QSAR models leverage molecular structures to predict biological effects, expediting drug discovery. We identified OmpW as a potential therapeutic target in A. baumannii and screened 11,648 natural compounds. We employed QSAR models from a ChEMBL bioactivity data set and conducted structure-based virtual screening against OmpW. Demethoxycurcumin, a lead compound, exhibited promising antibacterial activity against A. baumannii, including multidrug-resistant strains. Additionally, demethoxycurcumin demonstrated anti-virulence properties by reducing A. baumannii interaction with host cells. The findings highlight the potential of artificial intelligence in discovering curcuminoids as effective antimicrobial agents against A. baumannii infections, offering a promising strategy to address antibiotic resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Inteligência Artificial , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Humanos , Relação Quantitativa Estrutura-Atividade , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
J Infect ; 87(3): 220-229, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442373

RESUMO

Piperacillin-tazobactam resistance (P/T-R) is increasingly reported among Escherichia coli isolates. Although in vitro experiments have suggested that blaTEM gene plays a key role in the P/T-R acquisition, no clinical in vivo study has yet confirmed the role of blaTEM or other genes. Therefore, we aimed to identify the mechanisms underlying P/T-R by following up patients with E. coli complicated intra-abdominal infections (cIAI) who experienced P/T treatment failure. Four pairs of strains, clonally related from four patients, were isolated both before and after treatment with P/T dosed at 4 g/0.5 g intravenously. The P/T MIC was tested using broth microdilution, and ß-lactamase activity was determined in these isolates. Whole-genome sequencing (WGS) was performed to decipher the role of blaTEM and other genes associated with P/T-R. Changes in the outer membrane protein (OMP) profile were analyzed using SDS-PAGE, and blaTEM and ompC transcription levels were measured by RT-qPCR. In addition, in vitro competition fitness was performed between each pairs of strains (P/T-susceptible vs. P/T-resistant). We found a higher copy number of blaTEM gene in P/T-R isolates, generated by three different genetic events: (1) IS26-mediated duplication of the blaTEM gene, (2) generation of a small multicopy plasmid (ColE-like) carrying blaTEM, and (3) adaptive evolution via reduction of plasmid size, leading to a higher plasmid copy number. Moreover, two P/T-R strains showed reduced expression of OmpC. This study describes the mechanisms involved in the acquisition of P/T-R by E. coli in patients with cIAI. The understanding of P/T-R evolution is crucial for effectively treating infected patients and preventing the spread of resistant microorganisms.


Assuntos
Infecções por Escherichia coli , Infecções Intra-Abdominais , Humanos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Combinação Piperacilina e Tazobactam/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Infecções Intra-Abdominais/tratamento farmacológico , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA