Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(29): 10604-10614, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450410

RESUMO

Exposure to air pollution is a leading risk factor for disease and premature death, but technologies for assessing personal exposure to particulate and gaseous air pollutants, including the timing and location of such exposures, are limited. We developed a small, quiet, wearable monitor, called the AirPen, to quantify personal exposures to fine particulate matter (PM2.5) and volatile organic compounds (VOCs). The AirPen combines physical sample collection (PM onto a filter and VOCs onto a sorbent tube) with a suite of low-cost sensors (for PM, VOCs, temperature, pressure, humidity, light intensity, location, and motion). We validated the AirPen against conventional personal sampling equipment in the laboratory and then conducted a field study to measure at-work and away-from-work exposures to PM2.5 and VOCs among employees at an agricultural facility in Colorado, USA. The resultant sampling and sensor data indicated that personal exposures to benzene, toluene, ethylbenzene, and xylenes were dominated by a specific workplace location. These results illustrate how the AirPen can be used to advance our understanding of personal exposure to air pollution as a function of time, location, source, and activity, even in the absence of detailed activity diary data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Humanos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos
2.
Environ Sci Technol Lett ; 10(3): 247-253, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36938150

RESUMO

Particulate matter (PM) air pollution is a major health hazard. The health effects of PM are closely linked to particle size, which governs its deposition in (and penetration through) the respiratory tract. In recent years, low-cost sensors that report particle concentrations for multiple-sized fractions (PM1.0, PM2.5, PM10) have proliferated in everyday use and scientific research. However, knowledge of how well these sensors perform across the full range of reported particle size fractions is limited. Unfortunately, erroneous particle size data can lead to spurious conclusions about exposure, misguided interventions, and ineffectual policy decisions. We assessed the linearity, bias, and precision of three low-cost sensor models, as a function of PM size fraction, in an urban setting. Contrary to manufacturers' claims, sensors are only accurate for the smallest size fraction (PM1). The PM1.0-2.5 and PM2.5-10 size fractions had large bias, noise, and uncertainty. These results demonstrate that low-cost aerosol sensors (1) cannot discriminate particle size accurately and (2) only report linear and precise measures of aerosol concentration in the accumulation mode size range (i.e., between 0.1 and 1 µm). We recommend that crowdsourced air quality monitoring networks stop reporting coarse (PM2.5-10) mode and PM10 mass concentrations from these sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA