Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(1): 91-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411970

RESUMO

In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.


Assuntos
Endocanabinoides , Oligodendroglia , Endocanabinoides/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Diferenciação Celular/fisiologia
2.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408449

RESUMO

BACKGROUND: We have previously reported that the endocannabinoid receptor inverse agonist AM630 is a potent inhibitor of isocitrade dehydrogenase-1 wild-type glioblastoma (GBM) core tumour cell proliferation. To uncover the mechanism behind the anti-tumour effects we have performed a transcriptional analysis of AM630 activity both in the tumour core cells (U87) and the invasive margin cells (GIN-8), the latter representing a better proxy of post-surgical residual disease. RESULTS: The core and invasive margin cells exhibited markedly different gene expression profiles and only the core cells had high expression of a potential AM630 target, the CB1 receptor. Both cell types had moderate expression of the HTR2B serotonin receptor, a reported AM630 target. We found that the AM630 driven transcriptional response was substantially higher in the central cells than in the invasive margin cells, with the former driving the up regulation of immune response and the down regulation of cell cycle and metastatic pathways and correlating with transcriptional responses driven by established anti-neoplastics as well as serotonin receptor antagonists. CONCLUSION: Our results highlight the different gene sets involved in the core and invasive margin cell lines derived from GBM and an associated marked difference in responsiveness to AM630. Our findings identify AM630 as an anti-neoplastic drug in the context of the core cells, showing a high correlation with the activity of known antiproliferative drugs. However, we reveal a key set of similarities between the two cell lines that may inform therapeutic intervention.


Assuntos
Glioblastoma , Indóis , Regulação para Baixo , Glioblastoma/tratamento farmacológico , Humanos , Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas
3.
Br J Pharmacol ; 176(10): 1359-1360, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31032895

RESUMO

LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Canabinoides/farmacologia , Animais , Humanos , Camundongos
4.
Br J Pharmacol ; 176(10): 1361-1369, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29797438

RESUMO

Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Encéfalo/patologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Endocanabinoides/metabolismo , Neurônios/patologia , Oligodendroglia/patologia , Animais , Encéfalo/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores de Canabinoides/metabolismo
5.
Adv Pharmacol ; 80: 135-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28826533

RESUMO

Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive substances is an increasing public health problem specifically in Western societies, with teenagers, young adults, and the prison population being the most affected. Some of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other phytocannabinoid analogs have been detected in herbal preparations generically called "Spice." Spice, "K2" or "fake cannabis" is a general term used for variable herbal mixtures of unknown ingredients or chemical composition. SCB are highly potent CB1 cannabinoid receptor agonists falsely marketed and sold as safe and legal drugs. Here, we present an overview of the endocannabinoid system, CB, and SCB chemical structures and activity at CB receptors. Finally, we highlight the psychological effects of SCB, particularly on learning and memory, and adverse clinical effects including on the cardiovascular system, kidneys, and CNS, including psychosis. Taken together, it is clear that many SCB are extremely dangerous and a major public health problem.


Assuntos
Canabinoides/efeitos adversos , Canabinoides/química , Canabinoides/metabolismo , Canabinoides/farmacologia , Humanos , Memória/efeitos dos fármacos , Transtornos Psicóticos/patologia , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Neuroimmune Pharmacol ; 10(2): 309-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900077

RESUMO

A basal tone of the endocannabinoid 2-arachidonoylglycerol (2-AG) enhances late oligodendrocyte progenitor cell (OPC) differentiation. Here, we investigated whether endogenous 2-AG may also promote OPC proliferation in earlier stages. We found that the blockade of 2-AG synthesizing enzymes, sn-1-diacylglycerol lipases α and ß (DAGLs), with RHC-80267 or the antagonism of either CB1 or CB2 cannabinoid receptors with AM281 and AM630, respectively, impaired early OPC proliferation stimulated by platelet-derived growth factor (PDGF-AA) and basic fibroblast growth factor (bFGF). On the contrary, increasing the levels of endogenous 2-AG by blocking the degradative enzyme monoacylglycerol lipase (MAGL) with JZL-184, significantly increased OPC proliferation as did agonists of cannabinoid receptor CB1 (ACEA), CB2 (JWH133) or both (HU-210). To elucidate signaling pathways underlying OPC proliferation, we studied the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt and its downstream target mammalian target of rapamycin (mTOR). We show that phosphorylation of Akt and mTOR is required for OPC proliferation stimulated by growth factors (PDGF-AA and bFGF) or by CB1/CB2 agonists (ACEA/JWH133), since it was strongly decreased after LY294002 or rapamycin treatment. In line with this, blockade of CB1 (AM281), CB2 (AM630) or DAGLs (RHC-80267), decreased phosphorylation of Akt, mTOR and 4E-BP1, diminished cyclin E-cdk2 complex association and increased p27(kip1) levels. Our data suggest that proliferation of early OPCs stimulated by PDGF-AA and bFGF depends on the tonic activation of cannabinoid receptors by endogenous 2-AG and provide further evidence on the role of endocannabinoids in oligodendrocyte development, being important for the maintenance and self-renewal of the OPCs. The results highlight the therapeutic potential of the endocannabinoid signaling in the emerging field of brain repair.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Camundongos , Oligodendroglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células-Tronco/efeitos dos fármacos
8.
J Neuroinflammation ; 12: 15, 2015 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25616391

RESUMO

BACKGROUND: The acute phase protein pentraxin 3 (PTX3) is a new biomarker of stroke severity and is a key regulator of oedema resolution and glial responses after cerebral ischaemia, emerging as a possible target for brain repair after stroke. Neurogenesis and angiogenesis are essential events in post-stroke recovery. Here, we investigated for the first time the role of PTX3 in neurogenesis and angiogenesis after stroke. METHODS: PTX3 knockout (KO) or wild-type (WT) mice were subjected to experimental cerebral ischaemia (induced by middle cerebral artery occlusion (MCAo)). Poststroke neurogenesis was assessed by nestin, doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining, whereas angiogenesis was assessed by BrdU, vascular endothelial growth factor receptor 2 (VEGFR2) and PECAM-1 immunostaining. In vitro neurogenesis and angiogenesis assays were carried out on neurospheres derived from WT or interleukin-1ß (IL-1ß) KO mice, and mouse endothelial cell line bEnd.5 respectively. Behavioural function was assessed in WT and PTX3 KO mice using open-field, motor and Y-maze tests. RESULTS: Neurogenesis was significantly reduced in the dentate gyrus (DG) of the hippocampus of PTX3 KO mice, compared to WT mice, 6 days after MCAo. In addition, recombinant PTX3 was neurogenic in vitro when added to neurospheres, which was mediated by IL-1ß. In vivo poststroke angiogenesis was significantly reduced in PTX3 KO mice compared to WT mice 14 days after MCAo, as revealed by reduced vascular density, less newly formed blood vessels and decreased expression of VEGFR2. In vitro, recombinant PTX3 induced marked endothelial cellular proliferation and promoted formation of tube-like structures of endothelial cell line bEnd.5. Finally, a lack of PTX3 potentiated motor deficits 14 days after MCAo. CONCLUSIONS: These results indicate that PTX3 mediates neurogenesis and angiogenesis and contributes to functional recovery after stroke, highlighting a key role of PTX3 as a mediator of brain repair and suggesting that PTX3 could be used as a new target for stroke therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Proteína C-Reativa/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Indutores da Angiogênese , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica
9.
Biochem Soc Trans ; 41(6): 1577-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256257

RESUMO

Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Activation of cannabinoid receptors suppresses chronic inflammatory responses through the attenuation of pro-inflammatory mediators. Moreover, the endocannabinoid system directs cell fate specification of NSCs (neural stem cells) in the CNS (central nervous system). The aim of our work is to understand better the relationship between the endocannabinoid and the IL-1ß (interleukin-1ß) associated signalling pathways and NSC biology, in order to develop therapeutical strategies on CNS diseases that may facilitate brain repair. NSCs express functional CB1 and CB2 cannabinoid receptors, DAGLα (diacylglycerol lipase α) and the NSC markers SOX-2 and nestin. We have investigated the role of CB1 and CB2 cannabinoid receptors in the control of NSC proliferation and in the release of immunomodulators [IL-1ß and IL-1Ra (IL-1 receptor antagonist)] that control NSC fate decisions. Pharmacological blockade of CB1 and/or CB2 cannabinoid receptors abolish or decrease NSC proliferation, indicating a critical role for both CB1 and CB2 receptors in the proliferation of NSC via IL-1 signalling pathways. Thus the endocannabinoid system, which has neuroprotective and immunomodulatory actions mediated by IL-1 signalling cascades in the brain, could assist the process of proliferation and differentiation of embryonic or adult NSCs, and this may be of therapeutic interest in the emerging field of brain repair.


Assuntos
Endocanabinoides/imunologia , Interleucina-1beta/imunologia , Células-Tronco Neurais/imunologia , Neurogênese/imunologia , Transdução de Sinais/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
10.
Bioorg Med Chem ; 19(3): 1285-97, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21236688

RESUMO

A novel class of 2-amido-3-hydroxypyridin-4-one iron chelators is described. These compounds have been designed to behave as suitable molecular probes which will improve our knowledge of the role of iron in neurodegenerative conditions. Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson disease (PD), can be considered as diverse pathological conditions sharing critical metabolic processes such as protein aggregation and oxidative stress. Interestingly, both these metabolic alterations seem to be associated with the involvement of metal ions, including iron. Iron chelation is therefore a potential therapeutic approach. The physico-chemical (pK(a), pFe(3+) and logP) and biological properties (inhibition of iron-containing enzymes) of these chelators have been investigated in order to obtain a suitable profile for the treatment of neurodegenerative conditions. Studies with neuronal cell cultures confirm that the new iron chelators are neuroprotective against ß-amyloid-induced toxicity.


Assuntos
Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Pironas/síntese química , Pironas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Quelantes de Ferro/química , Quelantes de Ferro/farmacocinética , Camundongos , Sondas Moleculares/análise , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Pironas/química , Pironas/farmacocinética , Relação Estrutura-Atividade
11.
Glia ; 58(16): 1913-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20878765

RESUMO

Endocannabinoids have recently emerged as instructive cues in the developing central nervous system, and, based on the expression of their receptors, we identified oligodendrocytes as potential targets of these molecules. Here, we show that the enzymes responsible for the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), diacylglycerol lipase alpha (DAGLα) and beta (DAGLß), and degradation, monoacylglycerol lipase (MAGL), can be found in oligodendrocytes at different developmental stages. Moreover, cultured oligodendrocyte progenitor cells (OPCs) express DAGLα and ß abundantly, resulting in the stronger production of 2-AG than in differentiated oligodendrocytes. The opposite is observed with MAGL. CB1 and CB2 receptor antagonists (SR141716 and AM630) impaired OPC differentiation into mature oligodendrocytes and likewise, inhibiting DAGL activity with RHC-80267 or tetrahydrolipstatin also blocked oligodendrocyte maturation, an effect reversed by the addition of exogenous 2-AG. Likewise, 2-AG synthesis disruption using specific siRNAs against DAGLα and DAGLß significantly reduced myelin protein expression in vitro, whereas a pharmacological gain-of-function approach by using cannabinoid agonists or MAGL inhibition had the opposite effects. ERK/MAPK pathway is implicated in oligodendrocyte differentiation because PD98059, an inhibitor of MEK1, abrogated oligodendrocyte maturation. The cannabinoid receptor antagonists and RHC-80267 all diminished basal ERK1/2 phosphorylation, effects that were partially reversed by the addition of 2-AG. Overall, our data suggest a novel role of endocannabinoids in oligodendrocyte differentiation such that constitutive release of 2-AG activates cannabinoid receptors in an autocrine/paracrine way in OPCs, stimulating the ERK/MAPK signaling pathway.


Assuntos
Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores Etários , Animais , Diferenciação Celular/fisiologia , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
12.
J Neurochem ; 114(5): 1277-90, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20534007

RESUMO

Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Cytokines and chemokines are important neuroinflammatory mediators that are involved in the pathological processes resulting from brain trauma, ischemia and chronic neurodegenerative diseases. However, they are also involved in brain repair and recovery. Compelling evidence obtained, in vivo and in vitro, establish a dynamic interplay between the endocannabinoid system, the immune system and neural stem/progenitor cells (NSC) in order to promote brain self-repair. Cross-talk between inflammatory mediators and NSC might have important consequences for neural development and brain repair. In addition, brain immune cells (microglia) support NSC renewal, migration and lineage specification. The proliferation and differentiation of multipotent NSC must be precisely controlled during the development of the CNS, as well as for adult brain repair. Although signalling through neuroimmune networks has been implicated in many aspects of neural development, how it affects NSC remains unclear. However, recent findings have clearly demonstrated that there is bi-directional cross-talk between NSC, and the neuroimmune network to control the signals involved in self-renewal and differentiation of NSC. Specifically, there is evidence emerging that neuroimmune interactions control the generation of new functional neurones from adult NSC. Here, we review the evidence that neuroimmune networks contribute to neurogenesis, focusing on the regulatory mechanisms that favour the immune system (immune cells and immune molecules) as a novel element in the coordination of the self-renewal, migration and differentiation of NSC in the CNS. In conjunction, these data suggest a novel mode of action for the immune system in neurogenesis that may be of therapeutic interest in the emerging field of brain repair.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Comunicação Celular/imunologia , Neurogênese/imunologia , Neuroimunomodulação/imunologia , Células-Tronco/imunologia , Animais , Encéfalo/citologia , Humanos , Células-Tronco/citologia
13.
Biochem Soc Trans ; 36(Pt 6): 1304-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19021545

RESUMO

Neurodegenerative disorders include a variety of pathological conditions, which share similar critical metabolic processes such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. Chelation therapy could provide a valuable therapeutic approach to such disease states, since metals, particularly iron, are realistic pharmacological targets for the rational design of new therapeutic agents.


Assuntos
Quelantes de Ferro/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Humanos , Dados de Sequência Molecular , Oxiquinolina/análogos & derivados , Oxiquinolina/uso terapêutico , Fragmentos de Peptídeos/química , Piridinas/uso terapêutico
14.
Mol Cell Neurosci ; 38(4): 526-36, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18562209

RESUMO

The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Lipase Lipoproteica/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Linhagem Celular , Células Cultivadas , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/enzimologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/enzimologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/enzimologia , Células-Tronco/fisiologia
15.
Mol Cell Neurosci ; 38(3): 374-80, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18499473

RESUMO

Evidence is emerging that the tumour necrosis factor (TNF-alpha) is a potent signal that induces neural stem cell proliferation and migration. We show that NSC self-renewal is controlled by bi-directional cross-talk between the endocannabinoid system and the TNF signalling pathway. By blocking endogenous TNF-alpha activity, we demonstrate that the TNF system is critical for the proliferation of NSC. Furthermore, we show that pharmacological blockade of the CB1/CB2 cannabinoid receptors dramatically suppresses TNF-alpha-induced NSC proliferation. Interestingly, we found that CB1 or CB2 agonists induce NSC proliferation coupled to a significant increase in both TACE/ADAM 17 and TNF-alpha levels. Overall these data suggest a novel mode of action for the endocannabinoid system in NSC proliferation that is coupled to TNF signalling and that may be of therapeutic interest in the emerging field of brain repair.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Proliferação de Células , Endocanabinoides , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Agonistas de Receptores de Canabinoides , Antagonistas de Receptores de Canabinoides , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Neurônios/citologia , Receptores de Canabinoides/fisiologia , Células-Tronco/citologia
16.
J Neurochem ; 105(6): 2466-76, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18331585

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder, but the initiating molecular processes contributing to neuronal death are not well understood. AD is associated with elevated soluble and aggregated forms of amyloid beta (Abeta) and with oxidative stress. Furthermore, there is increasing evidence for a detrimental role of iron in the pathogenic process. In this context, iron chelation by compounds such as 3-hydroxypyridin-4-one, deferiprone (Ferriprox) may have potential neuroprotective effects. We have evaluated the possible neuroprotective actions of deferiprone against a range of AD-relevant insults including ferric iron, H(2)O(2) and Abeta in primary mouse cortical neurones. We have investigated the possible neuroprotective actions of deferiprone (1, 3, 10, 30 or 100 microM) in primary neuronal cultures following exposure to ferric iron [ferric nitrilotriacetate (FeNTA); 3 and 10 microM], H(2)O(2) (100 microM) or Abeta1-40 (3, 10 and 20 microM). Cultures were treated with deferiprone or vehicle either immediately or up to 6 h after the insult in a 24-well plate format. In order to elucidate a possible neuroprotective action of deferiprone against Parkinson's disease relevant insults another group of experiments were performed in the human neuroblastoma catecholaminergic SHSY-5Y cell line. SHSY-5Y cells were treated with MPP(+) iodide, the active metabolite of the dopaminergic neurotoxin MPTP and the neuroprotective actions of deferiprone evaluated. Cytotoxicity was assessed at 24 h by lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide turnover (FeNTA and hydrogen peroxide) and morphometric analysis of cell viability by Hoechst 33324/propidium iodide (FeNTA, Abeta and MPP(+)) or 6-carboxyfluorescein diacetate and annexin V-Cy3 (Abeta). The present study demonstrates that deferiprone protects against FeNTA, hydrogen peroxide, MPP(+) and Abeta1-40-induced neuronal cell death in vitro, which is consistent with previous in vitro and in vivo studies that have demonstrated similar protection with other iron chelators.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piridonas/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/fisiologia , Deferiprona , Humanos , Camundongos , Neurônios/fisiologia
17.
CNS Neurol Disord Drug Targets ; 7(1): 110-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18289037

RESUMO

Neurotrophic factors comprise a broad family of secreted proteins that have growth promoting, survival promoting and differentiation inducing activities. Disruption of neurotrophic factor signalling is a characteristic of many central and peripheral nervous system disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, stroke, and peripheral neuropathy and pain. It follows that treating patients with neurotrophic factors might be beneficial in a range of neurological diseases. However, the promising results seen in animal models of disease have not translated well into clinical trials due to the poor pharmacokinetics associated with the intact proteins, in particular, their short in vivo half-life, low blood brain barrier permeability, limited diffusion, and undesirable effects through multiple receptor interactions. This has been the main motivation for the design of small molecule modulators of the neurotrophic factor pathways. The review gives a brief survey of the various strategies to design mimetics that have been reported in the literature with special emphasis on the tandem repeat peptide agonist approach for BDNF/NT-4/5 and N-cadherin mimetics.


Assuntos
Biomimética , Fatores de Crescimento Neural/efeitos dos fármacos , Fatores de Crescimento Neural/fisiologia , Sequências de Repetição em Tandem/fisiologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Modelos Moleculares , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Dement Geriatr Cogn Disord ; 25(3): 278-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18303264

RESUMO

Vascular dementia (VaD) accounts for about 20% of all dementias, and vascular risk is a key factor in more than 40% of people with Alzheimer's disease (AD). Little is known about inflammatory processes in the brains of these individuals. We have examined inflammatory mediators (interleukin (IL)-1beta, IL-1alpha, IL-6 and tumour necrosis factor alpha) and chemokines (macrophage inflammatory protein 1, monocyte chemo-attractant protein (MCP)-1 and granulocyte macrophage colony-stimulating factor) in brain homogenates from grey and white matter of the frontal cortex (Brodmann area 9) from patients with VaD (n = 11), those with concurrent VaD and AD (mixed dementia; n = 8) and from age-matched controls (n = 13) using ELISA assays. We found a dramatic reduction of MCP-1 levels in the grey matter in VaD and mixed dementia in comparison to controls (55 and 66%, respectively). IL-6 decreases were also observed in the grey matter of VaD and mixed dementia (72 and 71%, respectively), with a more modest decrease (30%) in the white matter of patients with VaD or mixed dementia. In the first study to examine the status of inflammatory mediators in a brain region severely affected by white-matter lesions, our findings highlight - in contrast to previous reports in AD - that patients at the later stage of VaD or mixed dementia have a significantly attenuated neuro-inflammatory response.


Assuntos
Quimiocinas/metabolismo , Demência Vascular/metabolismo , Demência Vascular/patologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Idoso , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Microglia/metabolismo , Microglia/patologia
19.
Eur J Neurosci ; 26(6): 1548-59, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17880390

RESUMO

The subventricular zone (SVZ) is a source of post-natal glial precursors that can migrate to the overlying white matter, where they may differentiate into oligodendrocytes. We showed that, in the post-natal SVZ ependymocytes, radial glia and astrocyte-like cells express cannabinoid receptor 1 (CB1), whereas cannabinoid receptor 2 (CB2) is found in cells expressing the polysialylated neural cell adhesion molecule. To study CB1 and CB2 function, post-natal rats were exposed to selective CB1 or CB2 agonists (arachidonyl-2-chloroethylamide and JWH-056, respectively) for 15 days. Accordingly, we found that CB1 activation increases the number of Olig2-positive cells in the dorsolateral SVZ, whereas CB2 activation increases polysialylated neural cell adhesion molecule expression in this region. As intense myelination occurs during the first weeks of post-natal development, we examined how modulating these factors affected the expression of myelin basic protein. Pharmacological administration of agonists and antagonists of CB1 and CB2 showed that the activation of both receptors is needed to augment the expression of myelin basic protein in the subcortical white matter.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Canabinoides/farmacologia , Ventrículos Cerebrais/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Moléculas de Adesão de Célula Nervosa/biossíntese , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Western Blotting , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Ventrículos Cerebrais/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Microscopia Eletrônica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Gravidez , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácidos Siálicos/metabolismo
20.
J Neurochem ; 102(3): 826-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17419800

RESUMO

Leptin regulates energy balance by suppressing appetite and increasing energy expenditure through actions in the hypothalamus. Recently we demonstrated that the effects of leptin are, at least in part, mediated by the release of interleukin (IL)-1beta in the brain. Microglia constitute the major source of IL-1beta in the brain but it is not known whether these cells express leptin receptors, or respond to leptin to produce IL-1beta. Using RT-PCR and immunocytochemistry, we demonstrate that primary rat microglial cells express the short (non-signalling) and long (signalling) isoforms of the leptin receptors (Ob-R)s. Immunoassays performed on cell medium collected 24 h after leptin treatment (0.01-10 microg/mL) demonstrated a dose-dependent production and release of IL-1beta and its endogenously occurring receptor antagonist IL-1RA. In addition leptin-induced IL-1beta release occurs via a signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. Western blot analysis demonstrated that leptin induced the synthesis of pro-IL-1beta in microglial cells and the release of mature 17 kDa isoform into the culture medium. Leptin-induced IL-1beta release was neither inhibited by the pan-caspase inhibitor BOC-D-FMK, nor by the caspase 1 inhibitor Ac-YVAD-CHO indicating that IL-1 cleavage is independent of caspase activity. These results confirm our earlier observations in vivo and demonstrate that microglia are an important source of IL-1beta in the brain in response to leptin.


Assuntos
Encéfalo/imunologia , Caspase 1/imunologia , Interleucina-1beta/imunologia , Leptina/imunologia , Microglia/imunologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Caspase 1/metabolismo , Inibidores de Caspase , Células Cultivadas , Técnicas de Cocultura , Encefalite/imunologia , Encefalite/metabolismo , Encefalite/fisiopatologia , Inibidores Enzimáticos/farmacologia , Mediadores da Inflamação/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Leptina/metabolismo , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores para Leptina , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA