Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36836360

RESUMO

The lichen flora of Africa is still poorly known. In many parts of the tropics, recent studies utilizing DNA methods have revealed extraordinary diversity among various groups of lichenized fungi, including the genus Sticta. In this study, East African Sticta species and their ecology are reviewed using the genetic barcoding marker nuITS and morphological characters. The studied regions represent montane areas in Kenya and Tanzania, including the Taita Hills and Mt. Kilimanjaro, which belong to the Eastern Afromontane biodiversity hotspot. Altogether 14 Sticta species are confirmed from the study region, including the previously reported S. fuliginosa, S. sublimbata, S. tomentosa, and S. umbilicariiformis. Sticta andina, S. ciliata, S. duplolimbata, S. fuliginoides, and S. marginalis are reported as new to Kenya and/or Tanzania. Sticta afromontana, S. aspratilis, S. cellulosa, S. cyanocaperata, and S. munda, are described as new to science. The abundance of new diversity detected and the number of taxa represented by only few specimens show that more comprehensive sampling of the region may be needed to reveal the true diversity of Sticta in East Africa. More generally, our results highlight the need for further taxonomic studies of lichenized fungi in the region.

2.
Microorganisms ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546461

RESUMO

Tropical mountains and especially their forests are hot spots of biodiversity threatened by human population pressure and climate change. The diversity of lichens in tropical Africa is especially poorly known. Here we use the mtSSU and nuITS molecular markers together with morphology and ecology to assess Leptogium (Peltigerales, Ascomycota) diversity in the tropical mountains of Taita Hills and Mt. Kasigau in Kenya and Mt. Kilimanjaro in Tanzania. The sampled habitats cover a wide range of ecosystems from savanna to alpine heath vegetation and from relatively natural forests to agricultural environments and plantation forests. We demonstrate that Leptogium diversity in Africa is much higher than previously known and provide preliminary data on over 70 putative species, including nine established species previously known from the area and over 60 phylogenetically, morphologically, and/or ecologically defined Operational Taxonomic Units (OTUs). Many traditional species concepts are shown to represent morphotypes comprised of several taxa. Many of the species were only found from specific ecosystems and/or restricted habitats and are thus threatened by ongoing habitat fragmentation and degradation of the natural environment. Our results emphasize the importance of molecular markers in species inventories of highly diverse organism groups and geographical areas.

3.
Nat Commun ; 9(1): 3177, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093613

RESUMO

Species' functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird-fruit, bird-flower and insect-flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant-animal interaction networks.


Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Flores/fisiologia , Insetos/fisiologia , Simbiose , Altitude , Animais , Teorema de Bayes , Clima , Comportamento Alimentar , Frutas , Filogenia , Plantas , Projetos de Pesquisa , Especificidade da Espécie , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA