Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Eng Manag ; 69(5): 2039-2056, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35938060

RESUMO

A pandemic calls for large-scale action across national and international innovation systems in order to mobilize resources for developing and manufacturing crisis-critical products efficiently and in the huge quantities needed. Nowadays, these products also include a wide range of digital innovations. Given that many responses to the pandemic are technology driven, stakeholders involved in the development and manufacturing of crisis-critical products are likely to face intellectual property (IP)-related challenges. To (governmental) decision makers, IP challenges might not appear to be of paramount urgency compared to the many undoubtedly huge operational challenges to deploy critical resources. However, if IP challenges are considered too late, they may cause delays to urgently mobilize resources effectively. Innovation stakeholders could then be reluctant to fully engage in the development and manufacturing of crisis-critical products. This article adopts an IP and innovation perspective to learn from the currently unfolding COVID-19 pandemic using secondary data, including patent data, synthesized with an IP roadmap. We focus on technical aspects related to research, development, and upscaling of capacity to manufacture crisis-critical products in the huge volumes suddenly in demand. In this article, we offer a set of contributions. We provide a structure, framework, and language for those concerned with steering clear of IP challenges to avoid delays in fighting a pandemic. We provide a reasoning why IP needs to be considered earlier rather than too late in a global health crisis. Major stakeholders we identify include 1) governments; 2) manufacturing firms owning existing crisis-critical IP (incumbents in crisis-critical sectors); 3) manufacturing firms normally not producing crisis-critical products suddenly rushing into crisis-critical sectors to support the manufacturing of crisis-critical products in the quantities that far exceed incumbents' production capacities; and 4) voluntary grassroot initiatives that form during a pandemic, often by highly skilled engineers and scientists in order to contribute to the development and dissemination of crisis-critical products. For these major stakeholders, we draw up three scenarios, from which we identify associated IP challenges they face related to the development and manufacturing of technologies and products for 1) prevention (of spread); 2) diagnosis of infected patients; and 3) the development of treatments. This article provides a terminology to help policy and other decision makers to discuss IP considerations during pandemics. We propose a framework that visualizes changing industrial organizations and IP-associated challenges during a pandemic and derive initial principles to guide innovation and IP policy making during a pandemic. Obviously, our findings result only from observations of one ongoing pandemic and thus need to be verified further and interpreted with care.

2.
ACS Synth Biol ; 11(3): 1114-1128, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35259873

RESUMO

Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.


Assuntos
Nucleotídeos , Ácido Pirúvico , Sistema Livre de Células , Biossíntese de Proteínas
3.
Curr Protoc ; 2(3): e387, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35263038

RESUMO

Protein reagents are indispensable for most molecular and synthetic biology procedures. Most conventional protocols rely on highly purified protein reagents that require considerable expertise, time, and infrastructure to produce. In consequence, most proteins are acquired from commercial sources, reagent expense is often high, and accessibility may be hampered by shipping delays, customs barriers, geopolitical constraints, and the need for a constant cold chain. Such limitations to the widespread availability of protein reagents, in turn, limit the expansion and adoption of molecular biology methods in research, education, and technology development and application. Here, we describe protocols for producing a low-resource and locally sustainable reagent delivery system, termed "cellular reagents," in which bacteria engineered to overexpress proteins of interest are dried and can then be used directly as reagent packets in numerous molecular biology reactions, without the need for protein purification or a constant cold chain. As an example of their application, we describe the execution of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) using cellular reagents, detailing how to replace pure protein reagents with optimal amounts of rehydrated cellular reagents. We additionally describe a do-it-yourself fluorescence visualization device for using these cellular reagents in common molecular biology applications. The methods presented in this article can be used for low-cost, on-site production of commonly used molecular biology reagents (including DNA and RNA polymerases, reverse transcriptases, and ligases) with minimal instrumentation and expertise, and without the need for protein purification. Consequently, these methods should generally make molecular biology reagents more affordable and accessible. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cellular reagents Alternate Protocol 1: Preparation of lyophilized cellular reagents Alternate Protocol 2: Evaluation of bacterial culture growth via comparison to McFarland turbidity standards Support Protocol 1: SDS-PAGE for protein expression analysis of cellular reagents Basic Protocol 2: Using Taq DNA polymerase cellular reagents for PCR Basic Protocol 3: Using Br512 DNA polymerase cellular reagents for loop-mediated isothermal amplification (LAMP) Support Protocol 2: Building a fluorescence visualization device.


Assuntos
DNA , Biologia Molecular , Indicadores e Reagentes , Reação em Cadeia da Polimerase , Biologia Sintética
4.
Front Bioeng Biotechnol ; 9: 727584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497801

RESUMO

Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.

5.
PLoS One ; 16(6): e0252507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061896

RESUMO

We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.


Assuntos
Teste para COVID-19/normas , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Diagnósticos de Rotina/normas , Indicadores e Reagentes/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , SARS-CoV-2/genética , COVID-19/virologia , Teste para COVID-19/métodos , Camarões/epidemiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Gana/epidemiologia , Humanos , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Indicadores e Reagentes/provisão & distribuição , Técnicas de Diagnóstico Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Biologia Sintética/métodos , Transformação Bacteriana , Reino Unido/epidemiologia
7.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35136384

RESUMO

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Assuntos
COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Pandemias , RNA Viral , SARS-CoV-2/isolamento & purificação
9.
Cytometry A ; 95(6): 598-644, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31207046
10.
F1000Res ; 3: 271, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25653839

RESUMO

One of the foundations of the scientific method is to be able to reproduce experiments and corroborate the results of research that has been done before. However, with the increasing complexities of new technologies and techniques, coupled with the specialisation of experiments, reproducing research findings has become a growing challenge. Clearly, scientific methods must be conveyed succinctly, and with clarity and rigour, in order for research to be reproducible. Here, we propose steps to help increase the transparency of the scientific method and the reproducibility of research results: specifically, we introduce a peer-review oath and accompanying manifesto. These have been designed to offer guidelines to enable reviewers (with the minimum friction or bias) to follow and apply open science principles, and support the ideas of transparency, reproducibility and ultimately greater societal impact. Introducing the oath and manifesto at the stage of peer review will help to check that the research being published includes everything that other researchers would need to successfully repeat the work. Peer review is the lynchpin of the publishing system: encouraging the community to consciously (and conscientiously) uphold these principles should help to improve published papers, increase confidence in the reproducibility of the work and, ultimately, provide strategic benefits to authors and their institutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA