Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
J Sci Food Agric ; 96(5): 1409-14, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26619956

RESUMO

The health and wellbeing of future generations will depend on humankind's ability to deliver sufficient nutritious food to a world population in excess of 9 billion. Feeding this many people by 2050 will require science-based solutions that address sustainable agricultural productivity and enable healthful dietary patterns in a more globally equitable way. This topic was the focus of a multi-disciplinary international conference hosted by Nestlé in June 2015, and provides the inspiration for the present article. The conference brought together a diverse range of expertise and organisations from the developing and industrialised world, all with a common interest in safeguarding the future of food. This article provides a snapshot of three of the recurring topics that were discussed during this conference: soil health, plant science and the future of farming practice. Crop plants and their cultivation are the fundamental building blocks for a food secure world. Whether these are grown for food or feed for livestock, they are the foundation of food and nutrient security. Many of the challenges for the future of food will be faced where the crops are grown: on the farm. Farmers need to plant the right crops and create the right conditions to maximise productivity (yield) and quality (e.g. nutritional content), whilst maintaining the environment, and earning a living. New advances in science and technology can provide the tools and know-how that will, together with a more entrepreneurial approach, help farmers to meet the inexorable demand for the sustainable production of nutritious foods for future generations.


Assuntos
Agricultura/tendências , Abastecimento de Alimentos , Agricultura/métodos , Botânica/tendências , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos/métodos , Humanos , Micronutrientes/análise , Valor Nutritivo , Plantas/química , Solo/química
4.
Plant Physiol ; 165(2): 550-560, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24740000

RESUMO

Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%-44.4% and 7%-13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%-60.7% and 13.8%-16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%-48.9% and 5.3%-10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil.

5.
Annu Rev Plant Biol ; 65: 743-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24579993

RESUMO

Plant molecular pharming has emerged as a niche technology for the manufacture of pharmaceutical products indicated for chronic and infectious diseases, particularly for products that do not fit into the current industry-favored model of fermenter-based production campaigns. In this review, we explore the areas where molecular pharming can make the greatest impact, including the production of pharmaceuticals that have novel glycan structures or that cannot be produced efficiently in microbes or mammalian cells because they are insoluble or toxic. We also explore the market dynamics that encourage the use of molecular pharming, particularly for pharmaceuticals that are required in small amounts (such as personalized medicines) or large amounts (on a multi-ton scale, such as blood products and microbicides) and those that are needed in response to emergency situations (pandemics and bioterrorism). The impact of molecular pharming will increase as the platforms become standardized and optimized through adoption of good manufacturing practice (GMP) standards for clinical development, offering a new opportunity to produce inexpensive medicines in regional markets that are typically excluded under current business models.


Assuntos
Doença Crônica/tratamento farmacológico , Infecções/tratamento farmacológico , Agricultura Molecular/métodos , Fitoterapia/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Animais , Indústria Farmacêutica , Humanos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Polissacarídeos/biossíntese , Polissacarídeos/genética , Polissacarídeos/farmacologia
6.
Plant Biotechnol J ; 12(3): 277-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646295

RESUMO

Plant molecular biology has been the key driver to elucidate molecular pathways underlying plant growth, development and stress responses during the past decades. Although this has led to a plethora of available data, the translation to crop improvement is lagging behind. Here, we argue that plant scientists should become more involved in converting basic knowledge into applications in crops to sustainably support food security and agriculture. As the translatability from model species to crops is rather poor, this kind of translational research requires diligence and a thorough knowledge of the investigated trait in the crop. In addition, the robustness of a trait depends on the genotype and environmental conditions, demanding a holistic approach, which cannot always be evaluated under growth chamber and greenhouse conditions. To date, the improved resolution of many genome-wide technologies and the emerging expertise in canopy imaging, plant phenotyping and field monitoring make it very timely to move from the pathway specifics to important agronomical realizations, thus from pot to plot. Despite the availability of scientific know-how and expertise, the translation of new traits to applications using a transgene approach is in some regions of the world, such as Europe, seriously hampered by heavy and nontranslucent legislation for biotech crops. Nevertheless, progress in crop improvement will remain highly dependent on our ability to evaluate improved varieties in field conditions. Here, we plead for a network of protected sites for field trials across the different European climates to test improved biotech traits directly in crops.


Assuntos
Agricultura/métodos , Biotecnologia/métodos , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas
7.
Plant Biotechnol J ; 11(2): 157-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23066823

RESUMO

This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).


Assuntos
Produtos Agrícolas/química , Engenharia Metabólica , Óleos de Plantas/química , Vias Biossintéticas , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Plantas Geneticamente Modificadas/química , Sementes/química , Biologia Sintética
8.
Transgenic Res ; 21(2): 367-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21853296

RESUMO

Gamma linolenic acid (GLA; C18:3Δ6,9,12 cis), also known as γ-Linolenic acid, is an important essential fatty acid precursor for the synthesis of very long chain polyunsaturated fatty acids and important pathways involved in human health. GLA is synthesized from linoleic acid (LA; C18:2Δ9,12 cis) by endoplasmic reticulum associated Δ6-desaturase activity. Currently sources of GLA are limited to a small number of plant species with poor agronomic properties, and therefore an economical and abundant commercial source of GLA in an existing crop is highly desirable. To this end, the seed oil of a high LA cultivated species of safflower (Carthamus tinctorius) was modified by transformation with Δ6-desaturase from Saprolegnia diclina resulting in levels exceeding 70% (v/v) of GLA. Levels around 50% (v/v) of GLA in seed oil was achieved when Δ12-/Δ6-desaturases from Mortierella alpina was over-expressed in safflower cultivars with either a high LA or high oleic (OA; C18:1Δ9 cis) background. The differences in the overall levels of GLA suggest the accumulation of the novel fatty acid was not limited by a lack of incorporation into the triacylgylcerol backbone (>66% GLA achieved), or correlated with gene dosage (GLA levels independent of gene copy number), but rather reflected the differences in Δ6-desaturase activity from the two sources. To date, these represent the highest accumulation levels of a newly introduced fatty acid in a transgenic crop. Events from these studies have been propagated and recently received FDA approval for commercialization as Sonova™400.


Assuntos
Carthamus tinctorius/metabolismo , Linoleoil-CoA Desaturase/genética , Saprolegnia/enzimologia , Sementes/metabolismo , Ácido gama-Linolênico/biossíntese , Agrobacterium/genética , Agrobacterium/metabolismo , Carthamus tinctorius/genética , Fracionamento Químico/métodos , Meios de Cultura/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Linoleoil-CoA Desaturase/metabolismo , Ácido Oleico/metabolismo , Fenótipo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saprolegnia/genética , Sementes/genética
9.
Plant Physiol Biochem ; 49(2): 216-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193318

RESUMO

Plant oleosins are small proteins embedded within the phospholipid monolayer separating the triacylglycerol storage site of embryo-located oilbodies from the cytoplasm of oilseed cells. The potential of oleosins to act as carriers for recombinant proteins foreign to plant cells has been well established. Using this approach, the recombinant polypeptide is accumulated in oilbodies as a fusion with oleosin. DNA constructs having tandemly arranged oleosins followed by GFP or flanked by oleosins were used to transform Arabidopsis plants. In all cases the green fluorescence revealed that the fusion polypeptide had a native conformation and the recombinant proteins were correctly targeted to seed oilbodies. Mobilization of lipids was not retarded when using homo-dimer or -trimer oleosin fusions, since seed production, germination rates and seedling establishment were similar among all constructs, and comparable to wild-type Arabidopsis plants. Plant physiology and growth of recombinant lines were similar to wild-type plants. The construct specifying two oleosins flanking the GFP polypeptide revealed interesting properties regarding both the accumulation and the relative stability of the oilbody protein assembly. Although expression levels varied among transgenic lines, those transgenes accumulated significantly higher levels of fusion proteins as compared to previously reported values obtained by a single-oleosin configuration, reaching up to 2.3% of the total embryo proteins. These results shows that the expression cassettes comprising three oleosin molecules in frame to the GFP molecule or two oleosins flanking the GFP could be advantageous over the single-oleosin configuration for higher production and better commercialization of this plant biotechnological platform without jeopardizing plant vigour and physiology or oilbody stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética
10.
Plant Biotechnol J ; 9(2): 250-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20618764

RESUMO

Apolipoprotein AI Milano (ApoAI(Milano) ) was expressed as a fusion protein in transgenic safflower seeds. High levels of expression corresponding to 7 g of ApoAI(Milano) per kilogram of seed have been identified in a line selected for commercialization. The ApoAI(Milano) fusion protein was extracted from seed using an oilbody-based process and matured in vitro prior to final purification. This yielded a Des-1,2-ApoAI(Milano) product which was confirmed by biochemical characterization including immunoreactivity against ApoAI antibodies, isoelectric point, N-terminal sequencing and electrospray mass spectrometry. Purified Des-1,2-ApoAI(Milano) readily associated with dimyristoylphosphatidylcholine in clearance assays comparable to Human ApoAI. Its biological activity was assessed by cholesterol efflux assays using Des-1,2-ApoAI(Milano) :1-palmitoyl-2-oleoyl phosphatidylcholine complexes in vitro and in vivo. This study has established that high levels of biologically functional ApoAI(Milano) can be produced using a plant-based expression system.


Assuntos
Apolipoproteína A-I/genética , Carthamus tinctorius/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/farmacologia , Carthamus tinctorius/metabolismo , Colesterol/sangue , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Sementes/metabolismo
11.
Plant Biotechnol J ; 8(5): 588-606, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20500681

RESUMO

The evolution of the seed system provides enormous adaptability to the gymnosperms and angiosperms, because of the properties of dormancy, nutrient storage and seedling vigour. Many of the unique properties of seeds can be exploited in molecular farming applications, particularly where it is desirable to produce large quantities of a recombinant protein. Seeds of transgenic plants have been widely used to generate a raw material for the extraction and isolation of proteins and polypeptides, which can be processed into valuable biopharmaceuticals. The factors that control high-level accumulation of recombinant proteins in seed are reviewed in the following paragraphs. These include promoters and enhancers, which regulate transcript abundance. However, it is shown that subcellular trafficking and targeting of the desired polypeptides or proteins play a crucial role in their accumulation at economically useful levels. Seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins. The extraction and recovery of recombinant proteins from seeds is greatly assisted by their dormancy properties, because this allows for long-term stability of stored products including recombinant proteins and a decoupling of processing from the growth and harvest cycles. Furthermore, the low water content and relatively low bioload of seeds help greatly in designing cost-effective manufacturing processes for the desired active pharmaceutical ingredient. The development of cGMP processes based on seed-derived materials has only been attempted by a few groups to date, but we provide a review of the key issues and criteria based on interactions with Food and Drug Administration and European Medicines Agency. This article uses 'case studies' to highlight the utility of seeds as vehicles for pharmaceutical production including: insulin, human growth hormone, lysozyme and lactoferrin. These examples serve to illustrate the preclinical and, in one case, clinical information required to move these plant-derived molecules through the research phase and into the regulatory pathway en route to eventual approval.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Sementes/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica de Plantas , Hormônio do Crescimento/biossíntese , Humanos , Insulina/biossíntese , Lactoferrina/biossíntese , Muramidase/biossíntese , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas de Armazenamento de Sementes/biossíntese , Sementes/genética , Tecnologia Farmacêutica
12.
Plant Biotechnol J ; 7(7): 602-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19702754

RESUMO

The gene encoding a 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus was over-expressed in developing seeds of Arabidopsis thaliana. Biochemical analysis of T(2) and T(3) A. thaliana seeds revealed a significant increase in polyunsaturated fatty acids (FAs) (18:2(cisDelta9,12) and 18:3(cisDelta9,12,15)) at the expense of very long monounsaturated FA (20:1(cisDelta11)) and saturated FAs. In vitro assays demonstrated that recombinant B. napus ACBP (rBnACBP) strongly increases the formation of phosphatidylcholine (PC) in the absence of added lysophosphatidylcholine in microsomes from DeltaYOR175c yeast expressing A. thaliana lysophosphatidylcholine acyltransferase (AthLPCAT) cDNA or in microsomes from microspore-derived cell suspension cultures of B. napus L. cv. Jet Neuf. rBnACBP or bovine serum albumin (BSA) were also shown to be crucial for AthLPCAT to catalyse the transfer of acyl group from PC into acyl-CoA in vitro. These data suggest that the cytosolic 10-kDa ACBP has an effect on the equilibrium between metabolically active acyl pools (acyl-CoA and phospholipid pools) involved in FA modifications and triacylglycerol bioassembly in plants. Over-expression of ACBP during seed development may represent a useful biotechnological approach for altering the FA composition of seed oil.


Assuntos
Acil Coenzima A/metabolismo , Brassica napus/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Fosfatidilcolinas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , Microssomos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo
13.
J Exp Bot ; 59(13): 3543-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18703491

RESUMO

Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia
14.
Biotechnol Adv ; 25(2): 148-75, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17222526

RESUMO

The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.


Assuntos
Biotecnologia/métodos , Poliésteres/metabolismo , Alcanos/metabolismo , Citosol/metabolismo , Enzimas/genética , Enzimas/metabolismo , Escherichia coli/genética , Ácidos Graxos/metabolismo , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Oxirredução , Peroxissomos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Poliésteres/isolamento & purificação
15.
Plant Biotechnol J ; 4(1): 7-21, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177781

RESUMO

Transgenic oilseed rape (Brassica napus) plants may remain as 'volunteer' weeds in following crops, complicating cultivation and contaminating crop yield. Volunteers can become feral as well as act as a genetic bridge for the transfer of transgenes to weedy relatives. Transgenic mitigation using genes that are positive or neutral to the crop, but deleterious to weeds, should prevent volunteer establishment, as previously intimated using a tobacco (Nicotiana tabacum) model. A transgenically mitigated (TM), dwarf, herbicide-resistant construct using a gibberellic acid-insensitive (Deltagai) gene in the B. napus crop was effective in offsetting the risks of transgene establishment in volunteer populations of B. napus. This may be useful in the absence of herbicide, e.g. when wheat is rotated with oilseed rape. The TM dwarf B. napus plants grown alone had a much higher yield than the non-transgenics, but were exceedingly unfit in competition with non-transgenic tall cohorts. The reproductive fitness of TM B. napus was 0% at 2.5-cm and 4% at 5-cm spacing between glasshouse-grown plants relative to non-transgenic B. napus. Under screen-house conditions, the reproductive fitness of TM B. napus relative to non-transgenic B. napus was less than 12%, and the harvest index of the TM plants was less than 40% of that of the non-transgenic competitors. The data clearly indicate that the Deltagai gene greatly enhances the yield in a weed-free transgenic crop, but the dwarf plants can be eliminated when competing with non-transgenic cohorts (and presumably other species) when the selective herbicide is not used.


Assuntos
Brassica napus/genética , Genes de Plantas , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Brassica rapa/genética , Cruzamentos Genéticos , Deleção de Genes , Transferência Genética Horizontal , Giberelinas/farmacologia , Fenótipo , Plantas Geneticamente Modificadas/fisiologia
16.
Plant Biotechnol J ; 4(1): 77-85, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177787

RESUMO

The increased incidence of diabetes, coupled with the introduction of alternative delivery methods that rely on higher doses, is expected to result in a substantial escalation in the demand for affordable insulin in the future. Limitations in the capacity and economics of production will make it difficult for current manufacturing technologies to meet this demand. We have developed a novel expression and recovery technology for the economical manufacture of biopharmaceuticals from oilseeds. Using this technology, recombinant human precursor insulin was expressed in transgenic plants. Plant-derived insulin accumulates to significant levels in transgenic seed (0.13% total seed protein) and can be enzymatically treated in vitro to generate a product with a mass identical to that of the predicted product, DesB(30)-insulin. The biological activity of this product in vivo and in vitro was demonstrated using an insulin tolerance test in mice and phosphorylation assay performed in a mammalian cell culture system, respectively.


Assuntos
Arabidopsis/genética , Engenharia Genética , Insulina/genética , Insulina/metabolismo , Sementes/genética , Animais , Arabidopsis/química , Proteínas de Arabidopsis/genética , Linhagem Celular Tumoral , Humanos , Insulina/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Sementes/química , Transformação Genética , Tripsina/metabolismo
17.
BMC Biochem ; 7: 24, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17192193

RESUMO

BACKGROUND: Diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to generate triacylglycerol and CoA. The deduced amino acid sequence of cDNAs encoding DGAT1 from plants and mammals exhibit a hydrophilic N-terminal region followed by a number of potential membrane-spanning segments, which is consistent with the membrane-bound nature of this enzyme family. In order to gain insight into the structure/function properties of DGAT1 from Brassica napus (BnDGAT1), we produced and partially characterized a recombinant polyHis-tagged N-terminal fragment of the enzyme, BnDGAT1(1-116)His6, with calculated molecular mass of 13,278 Da. RESULTS: BnDGAT1(1-116)His6 was highly purified from bacterial lysate and plate-like monoclinic crystals were grown using this preparation. Lipidex-1000 binding assays and gel electrophoresis indicated that BnDGAT1(1-116)His6 interacts with long chain acyl-CoA. The enzyme fragment displayed enhanced affinity for erucoyl (22:1cisDelta13)-CoA over oleoyl (18:1cisDelta9)-CoA, and the binding process displayed positive cooperativity. Gel filtration chromatography and cross-linking studies indicated that BnDGAT1(1-116)His6 self-associated to form a tetramer. Polyclonal antibodies raised against a peptide of 15 amino acid residues representing a segment of BnDGAT1(1-116)His6 failed to react with protein in microsomal vesicles following treatment with proteinase K, suggesting that the N-terminal fragment of BnDGAT1 was localized to the cytosolic side of the ER. CONCLUSION: Collectively, these results suggest that BnDGAT1 may be allosterically modulated by acyl-CoA through the N-terminal region and that the enzyme self-associates via interactions on the cytosolic side of the ER.


Assuntos
Brassica napus/enzimologia , Diacilglicerol O-Aciltransferase/química , Proteínas de Plantas/química , Acil Coenzima A/metabolismo , DNA Complementar , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/isolamento & purificação , Diacilglicerol O-Aciltransferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Plant Cell ; 18(8): 1961-74, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16877495

RESUMO

We investigated the role of the oilbody proteins in developing and germinating Arabidopsis thaliana seeds. Seed oilbodies are simple organelles comprising a matrix of triacylglycerol surrounded by a phospholipid monolayer embedded and covered with unique proteins called oleosins. Indirect observations have suggested that oleosins maintain oilbodies as small single units preventing their coalescence during seed desiccation. To understand the role of oleosins during seed development or germination, we created lines of Arabidopsis in which a major oleosin is ablated or severely attenuated. This was achieved using RNA interference techniques and through the use of a T-DNA insertional event, which appears to interrupt the major (18 kD) seed oleosin gene of Arabidopsis and results in ablation of expression. Oleosin suppression resulted in an aberrant phenotype of embryo cells that contain unusually large oilbodies that are not normally observed in seeds. Changes in the size of oilbodies caused disruption of storage organelles, altering accumulation of lipids and proteins and causing delay in germination. The aberrant phenotypes were reversed by reintroducing a recombinant oleosin. Based on this direct evidence, we have shown that oleosins are important proteins in seed tissue for controlling oilbody structure and lipid accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sementes/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Graxos/metabolismo , Germinação/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Insercional , Organelas/metabolismo , Organelas/ultraestrutura , Fenótipo , Interferência de RNA , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Triglicerídeos/metabolismo
19.
Curr Opin Plant Biol ; 8(2): 163-4, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15752996
20.
Plant J ; 37(4): 461-70, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14756765

RESUMO

Oleosin protein is targeted to oil bodies via the endoplasmic reticulum (ER) and consists of a lipid-submerged hydrophobic (H) domain that is flanked by cytosolic hydrophilic domains. We investigated the relationship between oleosin ER topology and its subsequent ability to target to oil bodies. Oleosin variants were created to yield differing ER membrane topologies and tagged with a reporter enzyme. Localisation was assessed by fractionation after transient expression in embryonic cells. Membrane-straddled topologies with N-terminal sequence in the ER lumen and C-terminal sequence in the cytosol were unable to target to oil bodies efficiently. Similarly, a translocated topology with only ER membrane and lumenal sequence was unable to target to oil bodies efficiently. Both topology variants accumulated proportionately higher in ER microsomal fractions, demonstrating a block in transferring from ER to oil bodies. The residual oil body accumulation for the inverted topology was shown to be because of partial adoption of native ER membrane topology, using a reporter variant, which becomes inactivated by ER-mediated glycosylation. In addition, the importance of H domain sequence for oil body targeting was assessed using variants that maintain native ER topology. The central proline knot motif (PKM) has previously been shown to be critical for oil body targeting, but here the arms of the H domain flanking this motif were shown to be interchangeable with only a moderate reduction in oil body targeting. We conclude that oil body targeting of oleosin depends on a specific ER membrane topology but does not require a specific sequence in the H domain flanking arms.


Assuntos
Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Células Cultivadas , Glucuronidase/genética , Glucuronidase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Proteínas de Plantas/genética , Plasmídeos/genética , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA