Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(9): e4734, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37483125

RESUMO

Unlike laccases sensu stricto, which are usually monomeric enzymes, laccase-like enzymes recently re-classified as Novel Laccases (NLACs) are characterized by the formation of heterodimers with small proteins (subunits) of unknown function. Here the NLAC from Pleurotus eryngii (PeNL) and a small protein selected from the fungal genome, that is homologous to reported POXA3 from Pleurotus ostreatus, were produced in Aspergillus oryzae separately or together. The two proteins interacted regardless of whether the small subunit was co-expressed or exogenously added to the enzyme. The stability and catalytic activity of PeNL was significantly enhanced in the presence of the small subunit. Size exclusion chromatography-multi angle light scattering (SEC-MALS) analysis confirmed that the complex PeNL-ss is a heterodimer of 77.4 kDa. The crystallographic structure of the small protein expressed in Escherichia coli was solved at 1.6 Å resolution. This is the first structure elucidated of a small subunit of a NLAC. The helix bundle structure of the small subunit accommodates well with the enzyme model structure, including interactions with specific regions of NLACs and some amino acid residues of the substrate-binding loops.


Assuntos
Proteínas Fúngicas , Lacase , Lacase/química , Lacase/genética , Pleurotus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética
2.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
3.
Comput Struct Biotechnol J ; 21: 1041-1053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733701

RESUMO

Multi-copper oxidases (MCO) share a common molecular architecture and the use of copper ions as cofactors to reduce O2 to H2O, but show high sequence heterogeneity and functional diversity. Many new emerging MCO genes are wrongly annotated as laccases, the largest group of MCOs, with the widest range of biotechnological applications (particularly those from basidiomycete fungi) due to their ability to oxidise aromatic compounds and lignin. Thus, comprehensive studies for a better classification and structure-function characterisation of MCO families are required. Laccase-ferroxidases (LAC-FOXs) constitute a separate and unexplored group of MCOs with proposed dual features between laccases and ferroxidases. We aim to better define this cluster and the structural determinants underlying putative hybrid activity. We performed a phylogenetic analysis of the LAC-FOXs from basidiomycete fungi, that resulted in two subgroups. This division seemed to correlate with the presence or absence of some of the three acidic residues responsible for ferroxidase activity in Fet3p from Saccharomyces cerevisiae. One of these LAC-FOXs (with only one of these residues) from the fungus Heterobasidion annosum s. l. (HaLF) was synthesised, heterologously expressed and characterised to evaluate its catalytic activity. HaLF oxidised typical laccase substrates (phenols, aryl amines and N-heterocycles), but no Fe (II). The enzyme was subjected to site-directed mutagenesis to determine the key residues that confer ferroxidase activity. The mutated HaLF variant with full restoration of the three acidic residues exhibited efficient ferroxidase activity, while it partially retained the wide-range oxidative activity of the native enzyme associated to laccases sensu stricto.

4.
Front Fungal Biol ; 3: 1003489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746217

RESUMO

The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.

5.
J Fungi (Basel) ; 7(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064437

RESUMO

Agaricomycetes fungi responsible for decay of wood and other lignocellulosic substrates constitute a valuable source of lignin-degrading enzymes. Among these enzymes, laccases (multi-copper oxidases) present remarkable biotechnological potential as environmentally friendly biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the only requirement. Laccases from saprotrophic Agaricales species have been much less studied than laccases from Polyporales, despite the fact that the former fungi are excellent sources of laccases. Here, the gene of a novel laccase of Agrocybe pediades, that is secreted by the fungus during lignocellulose degradation, was synthesised de novo and expressed in Saccharomyces cerevisiae using an improved signal peptide previously obtained and enzyme directed evolution. The characterization of the new laccase variants provided new insights on the contribution of different amino acid residues to modulate laccase production, catalytic activity or optimal pH. The selected double-mutated variant also showed interesting properties as a biocatalyst, such as the ability to oxidise a wide range of substrates, including high-redox potential mediators and recalcitrant organic dyes, improved activity at neutral pH and high tolerance to inhibitors. Finally, we demonstrate the existence of three N-glycosylation sites in the laccase and their distinct effect on the secretion or catalytic activity of the enzyme.

6.
Cell Mol Life Sci ; 78(7): 3691-3707, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687500

RESUMO

Saccharomyces cerevisiae plays an important role in the heterologous expression of an array of proteins due to its easy manipulation, low requirements and ability for protein post-translational modifications. The implementation of the preproleader secretion signal of the α-factor mating pheromone from this yeast contributes to increase the production yields by targeting the foreign protein to the extracellular environment. The use of this signal peptide combined with enzyme-directed evolution allowed us to achieve the otherwise difficult functional expression of fungal laccases in S. cerevisiae, obtaining different evolved α-factor preproleader sequences that enhance laccase secretion. However, the design of a universal signal peptide to enhance the production of heterologous proteins in S. cerevisiae is a pending challenge. We describe here the optimisation of the α-factor preproleader to improve recombinant enzyme production in S. cerevisiae through two parallel engineering strategies: a bottom-up design over the native α-factor preproleader (αnat) and a top-down design over the fittest evolved signal peptide obtained in our lab (α9H2 leader). The goal was to analyse the effect of mutations accumulated in the signal sequence throughout iterations of directed evolution, or of other reported mutations, and their possible epistatic interactions. Both approaches agreed in the positive synergism of four mutations (Aα9D, Aα20T, Lα42S, Dα83E) contained in the final optimised leader (αOPT), which notably enhanced the secretion of several fungal oxidoreductases and hydrolases. Additionally, we suggest a guideline to further drive the heterologous production of a particular enzyme based on combinatorial saturation mutagenesis of positions 86th and 87th of the αOPT leader fused to the target protein.


Assuntos
Hidrolases/metabolismo , Fator de Acasalamento/metabolismo , Oxirredutases/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Hidrolases/genética , Fator de Acasalamento/genética , Oxirredutases/genética , Precursores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
7.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503813

RESUMO

Laccases secreted by saprotrophic basidiomycete fungi are versatile biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the sole requirement. Saccharomyces cerevisiae is a preferred host for engineering fungal laccases. To assist the difficult secretion of active enzymes by yeast, the native signal peptide is usually replaced by the preproleader of S. cerevisiae alfa mating factor (MFα1). However, in most cases, only basal enzyme levels are obtained. During directed evolution in S. cerevisiae of laccases fused to the α-factor preproleader, we demonstrated that mutations accumulated in the signal peptide notably raised enzyme secretion. Here we describe different protein engineering approaches carried out to enhance the laccase activity detected in the liquid extracts of S. cerevisiae cultures. We demonstrate the improved secretion of native and engineered laccases by using the fittest mutated α-factor preproleader obtained through successive laccase evolution campaigns in our lab. Special attention is also paid to the role of protein N-glycosylation in laccase production and properties, and to the introduction of conserved amino acids through consensus design enabling the expression of certain laccases otherwise not produced by the yeast. Finally, we revise the contribution of mutations accumulated in laccase coding sequence (CDS) during previous directed evolution campaigns that facilitate enzyme production.


Assuntos
Proteínas Fúngicas/biossíntese , Lacase/biossíntese , Engenharia de Proteínas , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Sequência Consenso , Evolução Molecular , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Engenharia Genética , Glicosilação , Lacase/química , Lacase/genética , Modelos Moleculares , Mutação , Conformação Proteica , Engenharia de Proteínas/métodos , Sinais Direcionadores de Proteínas/genética , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA