RESUMO
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
RESUMO
African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called 'Kingdon's Line'. However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation, and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.
RESUMO
BACKGROUND: Disease prevalence and mean phenotype values differ between many populations, including Inuit and Europeans. Whether these differences are partly explained by genetic differences or solely due to differences in environmental exposures is still unknown, because estimates of the genetic contribution to these means, which we will here refer to as mean genotypic values, are easily confounded, and because studies across genetically diverse populations are lacking. METHODS: Leveraging the unique genetic properties of the small, admixed and historically isolated Greenlandic population, we estimated the differences in mean genotypic value between Inuit and European genetic ancestry using an admixed sibling design. Analyses were performed across 26 metabolic phenotypes, in 1474 admixed sibling pairs present in a cohort of 5996 Greenlanders. RESULTS: After FDR correction for multiple testing, we found significantly lower mean genotypic values in Inuit genetic ancestry compared to European genetic ancestry for body weight (effect size per percentage of Inuit genetic ancestry (se), -0.51 (0.16) kg/%), body mass index (-0.20 (0.06) kg/m2/%), fat percentage (-0.38 (0.13) %/%), waist circumference (-0.42 (0.16) cm/%), hip circumference (-0.38 (0.11) cm/%) and fasting serum insulin levels (-1.07 (0.51) pmol/l/%). The direction of the effects was consistent with the observed mean phenotype differences between Inuit and European genetic ancestry. No difference in mean genotypic value was observed for height, markers of glucose homeostasis, or circulating lipid levels. CONCLUSIONS: We show that mean genotypic values for some metabolic phenotypes differ between two human populations using a method not easily confounded by possible differences in environmental exposures. Our study illustrates the importance of performing genetic studies in diverse populations.
Assuntos
Genótipo , Inuíte , Fenótipo , Irmãos , População Branca , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Massa Corporal , População Europeia , Groenlândia , Inuíte/genética , População Branca/genéticaRESUMO
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.
Assuntos
Antílopes , Animais , Antílopes/genética , Ecossistema , África Oriental , África Austral , Efeitos AntropogênicosRESUMO
Populations of the Eastern Highlands of Papua New Guinea (EHPNG, area 11,157 km2) lived in relative isolation from the rest of the world until the mid-20th century, and the region contains a wealth of linguistic and cultural diversity. Notably, several populations of EHPNG were devastated by an epidemic prion disease, kuru, which at its peak in the mid-twentieth century led to some villages being almost depleted of adult women. Until now, population genetic analyses to learn about genetic diversity, migration, admixture, and the impact of the kuru epidemic have been restricted to a small number of variants or samples. Here, we present a population genetic analysis of the region based on genome-wide genotype data of 943 individuals from 21 linguistic groups and 68 villages in EHPNG, including 34 villages in the South Fore linguistic group, the group most affected by kuru. We find a striking degree of genetic population structure in the relatively small region (average FST between linguistic groups 0.024). The genetic population structure correlates well with linguistic grouping, with some noticeable exceptions that reflect the clan system of community organization that has historically existed in EHPNG. We also detect the presence of migrant individuals within the EHPNG region and observe a significant excess of females among migrants compared to among non-migrants in areas of high kuru exposure (p = 0.0145, chi-squared test). This likely reflects the continued practice of patrilocality despite documented fears and strains placed on communities as a result of kuru and its associated skew in female incidence.
Assuntos
Kuru , Príons , Adulto , Feminino , Humanos , Kuru/epidemiologia , Kuru/genética , Kuru/história , Papua Nova Guiné/epidemiologia , Príons/genética , Genótipo , AprendizagemRESUMO
Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.
Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva GenéticaRESUMO
Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.
Assuntos
Mamíferos , Humanos , Animais , Suínos , Madagáscar , Filogenia , Porosidade , Filogeografia , Mamíferos/genéticaRESUMO
Perturbation of lipid homoeostasis is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide. We aimed to identify genetic variants affecting lipid levels, and thereby risk of CVD, in Greenlanders. Genome-wide association studies (GWAS) of six blood lipids, triglycerides, LDL-cholesterol, HDL-cholesterol, total cholesterol, as well as apolipoproteins A1 and B, were performed in up to 4473 Greenlanders. For genome-wide significant variants, we also tested for associations with additional traits, including CVD events. We identified 11 genome-wide significant loci associated with lipid traits. Most of these loci were already known in Europeans, however, we found a potential causal variant near PCSK9 (rs12117661), which was independent of the known PCSK9 loss-of-function variant (rs11491147). rs12117661 was associated with lower LDL-cholesterol (ßSD(SE) = -0.22 (0.03), p = 6.5 × 10-12) and total cholesterol (-0.17 (0.03), p = 1.1 × 10-8) in the Greenlandic study population. Similar associations were observed in Europeans from the UK Biobank, where the variant was also associated with a lower risk of CVD outcomes. Moreover, rs12117661 was a top eQTL for PCSK9 across tissues in European data from the GTEx portal, and was located in a predicted regulatory element, supporting a possible causal impact on PCSK9 expression. Combined, the 11 GWAS signals explained up to 16.3% of the variance of the lipid traits. This suggests that the genetic architecture of lipid levels in Greenlanders is different from Europeans, with fewer variants explaining the variance.
Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Humanos , Pró-Proteína Convertase 9/genética , Groenlândia , Triglicerídeos/genética , Lipídeos/genética , HDL-Colesterol , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Doenças Cardiovasculares/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genéticaRESUMO
Klunk et al. analyzed ancient DNA data from individuals in London and Denmark before, during and after the Black Death [1], and argued that allele frequency changes at immune genes were too large to be produced by random genetic drift and thus must reflect natural selection. They also identified four specific variants that they claimed show evidence of selection including at ERAP2, for which they estimate a selection coefficient of 0.39-several times larger than any selection coefficient on a common human variant reported to date. Here we show that these claims are unsupported for four reasons. First, the signal of enrichment of large allele frequency changes in immune genes comparing people in London before and after the Black Death disappears after an appropriate randomization test is carried out: the P value increases by ten orders of magnitude and is no longer significant. Second, a technical error in the estimation of allele frequencies means that none of the four originally reported loci actually pass the filtering thresholds. Third, the filtering thresholds do not adequately correct for multiple testing. Finally, in the case of the ERAP2 variant rs2549794, which Klunk et al. show experimentally may be associated with a host interaction with Y. pestis, we find no evidence of significant frequency change either in the data that Klunk et al. report, or in published data spanning 2,000 years. While it remains plausible that immune genes were subject to natural selection during the Black Death, the magnitude of this selection and which specific genes may have been affected remains unknown.
RESUMO
Genetic variants causing loss of sucrase-isomaltase (SI) function result in malabsorption of sucrose and starch components and the condition congenital sucrase-isomaltase deficiency (CSID). The identified genetic variants causing CSID are very rare in all surveyed populations around the globe, except the Arctic-specific c.273_274delAG loss-of-function (LoF) variant, which is common in the Greenlandic Inuit and other Arctic populations. In these populations, it is, therefore, possible to study people with loss of SI function in an unbiased way to elucidate the physiological function of SI, and investigate both short-term and long-term health effects of reduced small intestinal digestion of sucrose and starch. Importantly, a recent study of the LoF variant in Greenlanders reported that adult homozygous carriers have a markedly healthier metabolic profile. These findings indicate that SI inhibition could potentially improve metabolic health also in individuals not carrying the LoF variant, which is of great interest considering the massive number of individuals with obesity and type 2 diabetes worldwide. Therefore, the objectives of this review, are 1) to describe the biological role of SI, 2) to describe the metabolic impact of the Arctic SI LoF variant, 3) to reflect on potential mechanisms linking reduced SI function to metabolic health, and 4) to discuss what knowledge is necessary to properly evaluate whether SI inhibition is a potential therapeutic target for improving cardiometabolic health.
RESUMO
The iconic Cape buffalo has experienced several documented population declines in recent history. These declines have been largely attributed to the late 19th century rinderpest pandemic. However, the effect of the rinderpest pandemic on their genetic diversity remains contentious, and other factors that have potentially affected this diversity include environmental changes during the Pleistocene, range expansions and recent human activity. Motivated by this, we present analyses of whole genome sequencing data from 59 individuals from across the Cape buffalo range to assess present-day levels of genome-wide genetic diversity and what factors have influenced these levels. We found that the Cape buffalo has high average heterozygosity overall (0.40%), with the two southernmost populations having significantly lower heterozygosity levels (0.33% and 0.29%) on par with that of the domesticated water buffalo (0.29%). Interestingly, we found that these lower levels are probably due to recent inbreeding (average fraction of runs of homozygosity 23.7% and 19.9%) rather than factors further back in time during the Pleistocene. Moreover, detailed investigations of recent demographic history show that events across the past three centuries were the main drivers of the exceptional loss of genetic diversity in the southernmost populations, coincident with the onset of colonialism in the southern extreme of the Cape buffalo range. Hence, our results add to the growing body of studies suggesting that multiple recent human-mediated impacts during the colonial period caused massive losses of large mammal abundance in southern Africa.
Assuntos
Genética Populacional , Peste Bovina , Animais , Humanos , África do Sul , Variação Genética , Búfalos/genética , ColonialismoRESUMO
Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (ß = -232 pmol/L, ßSD = -0.695, P = 4.43 × 10-4) and higher 30-min glucose (ß = 1.20 mmol/L, ßSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10-6) and HbA1c (ß = 0.113 HbA1c%, ßSD = 0.205, P = 7.84 × 10-3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1-3% in large populations. Funding: Novo Nordisk Foundation, Independent Research Fund Denmark, and Karen Elise Jensen's Foundation.
RESUMO
The genetic architecture of antidepressant response is poorly understood. Polygenic risk scores (PRS), exploration of placebo response and the use of sub-scales might provide insights. Here, we investigate the association between PRSs for relevant complex traits and response to vortioxetine treatment and placebo using clinical scales, including sub-scales and self-reported assessments. We collected a clinical test sample of Major Depressive Disorder (MDD) patients treated with vortioxetine (N = 907) or placebo (N = 455) from seven randomized, double-blind, clinical trials. In parallel, we obtained data from an observational web-based study of vortioxetine-treated patients (N = 642) with self-reported response. PRSs for antidepressant response, psychiatric disorders, and symptom traits were derived using summary statistics from well-powered genome-wide association studies (GWAS). Association tests were performed between the PRSs and treatment response in each of the two test samples and empirical p-values were evaluated. In the clinical test sample, no PRSs were significantly associated with response to vortioxetine treatment or placebo following Bonferroni correction. However, clinically assessed treatment response PRS was nominally associated with vortioxetine treatment and placebo response given by several secondary outcome scales (improvement on HAM-A, HAM-A Psychic Anxiety sub-scale, CPFQ & PDQ), (P ≤ 0.026). Further, higher subjective well-being PRS (P ≤ 0.033) and lower depression PRS (P = 0.01) were nominally associated with higher placebo response. In the self-reported test sample, higher schizophrenia PRS was significantly associated with poorer self-reported response (P = 0.0001). The identified PRSs explain a low proportion of the variance (1.2-5.3%) in placebo and treatment response. Although the results were limited, we believe that PRS associations bear unredeemed potential as a predictor for treatment response, as more well-powered and phenotypically similar GWAS bases become available.
Assuntos
Transtorno Depressivo Maior , Humanos , Vortioxetina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/induzido quimicamente , Herança Multifatorial , Estudo de Associação Genômica Ampla , Resultado do Tratamento , Antidepressivos , Método Duplo-Cego , Efeito PlaceboRESUMO
Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Assuntos
Peste , Humanos , Peste/epidemiologia , Peste/genética , Pandemias/história , Metagenômica , Genoma Bacteriano , FilogeniaRESUMO
The common Arctic-specific LDLR p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this, we aimed to investigate the effect of p.G137S on metabolic health and cardiovascular disease risk among Greenlanders to quantify its impact on the population. In a population-based Greenlandic cohort (n = 5,063), we tested for associations between the p.G137S variant and metabolic health traits as well as cardiovascular disease risk based on registry data. In addition, we explored the variant's impact on plasma NMR measured lipoprotein concentration and composition in another Greenlandic cohort (n = 1,629); 29.5% of the individuals in the cohort carried at least one copy of the p.G137S risk allele. Furthermore, 25.4% of the heterozygous and 54.7% of the homozygous carriers had high levels (>4.9 mmol/L) of serum LDL cholesterol, which is above the diagnostic level for familial hypercholesterolemia (FH). Moreover, p.G137S was associated with an overall atherosclerotic lipid profile, and increased risk of ischemic heart disease (HR [95% CI], 1.51 [1.18-1.92], p = 0.00096), peripheral artery disease (1.69 [1.01-2.82], p = 0.046), and coronary operations (1.78 [1.21-2.62], p = 0.0035). Due to its high frequency and large effect sizes, p.G137S has a marked population-level impact, increasing the risk of FH and cardiovascular disease for up to 30% of the Greenlandic population. Thus, p.G137S is a potential marker for early intervention in Arctic populations.
RESUMO
BACKGROUND: Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. RESULTS: We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the "northern" Papio clade, and signal the presence of population structure within P. ursinus. CONCLUSIONS: The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity.
Assuntos
Evolução Biológica , Papio ursinus , Alelos , Animais , Masculino , Moçambique , Papio/genética , Papio ursinus/anatomia & histologiaRESUMO
The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonized its current range. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic single nucleotide polymorphisms from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin of the harbour seal, colonization of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonize and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.
Assuntos
Phoca , Adaptação Fisiológica , Animais , Canadá , Europa (Continente) , Metagenômica , Phoca/genéticaRESUMO
BACKGROUND & AIMS: The sucrase-isomaltase (SI) c.273_274delAG loss-of-function variant is common in Arctic populations and causes congenital sucrase-isomaltase deficiency, which is an inability to break down and absorb sucrose and isomaltose. Children with this condition experience gastrointestinal symptoms when dietary sucrose is introduced. We aimed to describe the health of adults with sucrase-isomaltase deficiency. METHODS: The association between c.273_274delAG and phenotypes related to metabolic health was assessed in 2 cohorts of Greenlandic adults (n = 4922 and n = 1629). A sucrase-isomaltase knockout (Sis-KO) mouse model was used to further elucidate the findings. RESULTS: Homozygous carriers of the variant had a markedly healthier metabolic profile than the remaining population, including lower body mass index (ß [standard error], -2.0 [0.5] kg/m2; P = 3.1 × 10-5), body weight (-4.8 [1.4] kg; P = 5.1 × 10-4), fat percentage (-3.3% [1.0%]; P = 3.7 × 10-4), fasting triglyceride (-0.27 [0.07] mmol/L; P = 2.3 × 10-6), and remnant cholesterol (-0.11 [0.03] mmol/L; P = 4.2 × 10-5). Further analyses suggested that this was likely mediated partly by higher circulating levels of acetate observed in homozygous carriers (ß [standard error], 0.056 [0.002] mmol/L; P = 2.1 × 10-26), and partly by reduced sucrose uptake, but not lower caloric intake. These findings were verified in Sis-KO mice, which, compared with wild-type mice, were leaner on a sucrose-containing diet, despite similar caloric intake, had significantly higher plasma acetate levels in response to a sucrose gavage, and had lower plasma glucose level in response to a sucrose-tolerance test. CONCLUSIONS: These results suggest that sucrase-isomaltase constitutes a promising drug target for improvement of metabolic health, and that the health benefits are mediated by reduced dietary sucrose uptake and possibly also by higher levels of circulating acetate.
Assuntos
Sacarose Alimentar , Complexo Sacarase-Isomaltase , Acetatos , Animais , Erros Inatos do Metabolismo dos Carboidratos , Sacarose Alimentar/efeitos adversos , Humanos , Camundongos , Oligo-1,6-Glucosidase , Complexo Sacarase-Isomaltase/deficiência , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismoRESUMO
MOTIVATION: Inference of identity-by-descent (IBD) sharing along the genome between pairs of individuals has important uses. But all existing inference methods are based on genotypes, which is not ideal for low-depth Next Generation Sequencing (NGS) data from which genotypes can only be called with high uncertainty. RESULTS: We present a new probabilistic software tool, LocalNgsRelate, for inferring IBD sharing along the genome between pairs of individuals from low-depth NGS data. Its inference is based on genotype likelihoods instead of genotypes, and thereby it takes the uncertainty of the genotype calling into account. Using real data from the 1000 Genomes project, we show that LocalNgsRelate provides more accurate IBD inference for low-depth NGS data than two state-of-the-art genotype-based methods, Albrechtsen et al. (2009) and hap-IBD. We also show that the method works well for NGS data down to a depth of 2×. AVAILABILITY AND IMPLEMENTATION: LocalNgsRelate is freely available at https://github.com/idamoltke/LocalNgsRelate. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.