Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 417(1): 393-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22166201

RESUMO

Female flowers of hop (Humulus lupulus L.) develop a large number of glandular trichomes called lupulin glands that contain a variety of prenylated compounds such as α- and ß-acid (humulone and lupulone, respectively), as well as xanthohumol, a chalcone derivative. These prenylated compounds are biosynthesized by prenyltransferases catalyzing the transfer of dimethylallyl moiety to aromatic substances. In our previous work, we found HlPT-1 a candidate gene for such a prenyltransferase in a cDNA library constructed from lupulin-enriched flower tissues. In this study, we have characterized the enzymatic properties of HlPT-1 using a recombinant protein expressed in baculovirus-infected insect cells. HlPT-1 catalyzed the first transfer of dimethylallyl moiety to phloroglucinol derivatives, phlorisovalerophenone, phlorisobutyrophenone and phlormethylbutanophenone, leading to the formation of humulone and lupulone derivatives. HlPT-1 also recognized naringenin chalcone as a flavonoid substrate to yield xanthohumol, and this broad substrate specificity is a unique character of HlPT-1 that is not seen in other reported flavonoid prenyltransferases, all of which show strict specificity for their aromatic substrates. Moreover, unlike other aromatic substrate prenyltransferases, HlPT-1 revealed an exclusive requirement for Mg(2+) as a divalent cation for its enzymatic activity and also showed exceptionally narrow optimum pH at around pH 7.0.


Assuntos
Membrana Celular/enzimologia , Cicloexenos/metabolismo , Dimetilaliltranstransferase/metabolismo , Humulus/enzimologia , Terpenos/metabolismo , Dimetilaliltranstransferase/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA