Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1267839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867499

RESUMO

Background: Although activation of inflammatory processes is essential to fight infections, its prolonged impact on brain function is well known to contribute to the pathophysiology of many medical conditions, including neuropsychiatric disorders. Therefore, identifying novel strategies to selectively counter the harmful effects of neuroinflammation appears as a major health concern. In that context, this study aimed to test the relevance of a nutritional intervention with saffron, a spice known for centuries for its beneficial effect on health. Methods: For this purpose, the impact of an acute oral administration of a standardized saffron extract, which was previously shown to display neuromodulatory properties and reduce depressive-like behavior, was measured in mice challenged with lipopolysaccharide (LPS, 830 µg/kg, ip). Results: Pretreatment with saffron extract (6.5 mg/kg, per os) did not reduce LPS-induced sickness behavior, preserving therefore this adaptive behavioral response essential for host defense. However, it interfered with delayed changes of expression of cytokines, chemokines and markers of microglial activation measured 24 h post-LPS treatment in key brain areas for behavior and mood control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also counteracted by that time the impact of LPS on several neurobiological processes contributing to inflammation-induced emotional alterations, in particular the activation of the kynurenine pathway, assessed through the expression of its main enzymes, as well as concomitant impairment of serotonergic and dopaminergic neurotransmission. Conclusion: Altogether, this study provides important clues on how saffron extract interferes with brain function in conditions of immune stimulation and supports the relevance of saffron-based nutritional interventions to improve the management of inflammation-related comorbidities.

2.
Nutrients ; 14(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406124

RESUMO

Increases in oxidative stress have been reported to play a central role in the vulnerability to depression, and antidepressant drugs may reduce increased oxidative stress in patients. Among the plants exerting anti-inflammatory and anti-oxidant properties, saffron, a spice derived from the flower of Crocus sativus, is also known for its positive effects on depression, potentially through its SSRI-like properties. However, the molecular mechanisms underlying these effects and their health benefits for humans are currently unclear. Using an original ex vivo clinical approach, we demonstrated for the first time that the circulating human metabolites produced following saffron intake (Safr'InsideTM) protect human neurons from oxidative-stress-induced neurotoxicity by preserving cell viability and increasing BNDF production. In particular, the metabolites significantly stimulated both dopamine and serotonin release. In addition, the saffron's metabolites were also able to protect serotonergic tone by inhibiting the expression of the serotonin transporter SERT and down-regulating serotonin metabolism. Altogether, these data provide new biochemical insights into the mechanisms underlying the beneficial impact of saffron on neuronal viability and activity in humans, in the context of oxidative stress related to depression.


Assuntos
Crocus , Transtorno Depressivo , Crocus/química , Humanos , Neurônios , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Serotonina
3.
J Neuroinflammation ; 18(1): 290, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895261

RESUMO

BACKGROUND: Major depressive disorder (MDD) represents a major public health concern, particularly due to its steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate inflammation-related vs. inflammation-unrelated depression. METHODS: While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a procedure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), a stress-induced depression model notably renowned for its responsivity to antidepressants. RESULTS: While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation and downstream neurobiological pathways contributing to inflammation-driven depression were specifically activated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition. CONCLUSIONS: These data validate an experimental design suitable to deeply study the mechanisms underlying inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better understand the pathophysiology of treatment resistant depression.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Animais , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Pharmaceutics ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959434

RESUMO

Depressive disorders are a major public health concern. Despite currently available treatment options, their prevalence steadily increases, and a high rate of therapeutic failure is often reported, together with important antidepressant-related side effects. This highlights the need to improve existing therapeutic strategies, including by using nutritional interventions. In that context, saffron recently received particular attention for its beneficial effects on mood, although the underlying mechanisms are poorly understood. This study investigated in mice the impact of a saffron extract (Safr'Inside™; 6.25 mg/kg, per os) on acute restraint stress (ARS)-induced depressive-like behavior and related neurobiological alterations, by focusing on hypothalamic-pituitary-adrenal axis, inflammation-related metabolic pathways, and monoaminergic systems, all known to be altered by stress and involved in depressive disorder pathophysiology. When given before stress onset, Safr'Inside administration attenuated ARS-induced depressive-like behavior in the forced swim test. Importantly, it concomitantly reversed several stress-induced monoamine dysregulations and modulated the expression of key enzymes of the kynurenine pathway, likely reducing kynurenine-related neurotoxicity. These results show that saffron pretreatment prevents the development of stress-induced depressive symptoms and improves our understanding about the underlying mechanisms, which is a central issue to validate the therapeutic relevance of nutritional interventions with saffron in depressed patients.

5.
Nutrients ; 13(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799507

RESUMO

Depressive disorders represent a major public health concern and display a continuously rising prevalence. Importantly, a large proportion of patients develops aversive side effects and/or does not respond properly to conventional antidepressants. These issues highlight the need to identify further therapeutic strategies, including nutritional approaches using natural plant extracts with known beneficial impacts on health. In that context, growing evidence suggests that saffron could be a particularly promising candidate. This preclinical study aimed therefore to test its antidepressant-like properties in mice and to decipher the underlying mechanisms by focusing on monoaminergic neurotransmission, due to its strong implication in mood disorders. For this purpose, the behavioral and neurobiochemical impact of a saffron extract, Safr'Inside™ (6.5 mg/kg per os) was measured in naïve mice. Saffron extract reduced depressive-like behavior in the forced swim test. This behavioral improvement was associated with neurobiological modifications, particularly changes in serotonergic and dopaminergic neurotransmission, suggesting that Safr'Inside™ may share common targets with conventional pharmacological antidepressants. This study provides useful information on the therapeutic relevance of nutritional interventions with saffron extracts to improve management of mood disorders.


Assuntos
Antidepressivos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Crocus , Depressão/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Administração Oral , Animais , Antidepressivos/administração & dosagem , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/administração & dosagem , Serotonina/metabolismo
6.
Psychopharmacology (Berl) ; 236(5): 1583-1596, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31147734

RESUMO

RATIONALE: Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES: The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS: Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS: ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS: Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.


Assuntos
Azepinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Privação Materna , Naftalenos/farmacologia , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Azepinas/uso terapêutico , Corticosterona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/farmacologia , Quinase de Cadeia Leve de Miosina/uso terapêutico , Naftalenos/uso terapêutico , Gravidez , Ratos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Fatores de Tempo
7.
Brain Behav Immun ; 80: 179-192, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872090

RESUMO

The accumulation of adverse events in utero and during childhood differentially increases the vulnerability to psychiatric diseases in men and women. Gut microbiota is highly sensitive to the early environment and has been recently hypothesized to affect brain development. However, the impact of early-life adversity on gut microbiota, notably with regards to sex differences, remains to be explored. We examined the effects of multifactorial early-life adversity on behavior and microbiota composition in C3H/HeN mice of both sexes exposed to a combination of maternal immune activation (lipopolysaccharide injection on embryonic day 17, 120 µg/kg, i.p.), maternal separation (3hr per day from postnatal day (PND)2 to PND14) and maternal unpredictable chronic mild stress. At adulthood, offspring exposed to multi-hit early adversity showed sex-specific behavioral phenotypes with males exhibiting deficits in social behavior and females showing increased anxiety in the elevated plus maze and increased compulsive behavior in the marble burying test. Early adversity also differentially regulated gene expression in the medial prefrontal cortex (mPFC) according to sex. Interestingly, several genes such as Arc, Btg2, Fosb, Egr4 or Klf2 were oppositely regulated by early adversity in males versus females. Finally, 16S-based microbiota profiling revealed sex-dependent gut dysbiosis. In males, abundance of taxa belonging to Lachnospiraceae and Porphyromonadaceae families or other unclassified Firmicutes, but also Bacteroides, Lactobacillus and Alloprevotella genera was regulated by early adversity. In females, the effects of early adversity were limited and mainly restricted to Lactobacillus and Mucispirillum genera. Our work reveals marked sex differences in a multifactorial model of early-life adversity, both on emotional behaviors and gut microbiota, suggesting that sex should systematically be considered in preclinical studies both in neurogastroenterology and psychiatric research.


Assuntos
Microbioma Gastrointestinal/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Animais , Animais Recém-Nascidos , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Disbiose/metabolismo , Feminino , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C3H , Microbiota , Córtex Pré-Frontal/metabolismo , Fatores Sexuais , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA