RESUMO
Within the framework of liquid-liquid phase separation (LLPS), biomolecular condensation orchestrates vital cellular processes, and its dysregulation is implicated in severe pathological conditions. Recent studies highlight the role of intrinsically disordered proteins (IDPs) in LLPS, yet the influence of microenvironmental factors has remained a puzzling factor. Here, via computational simulation of the impact of solution conditions on LLPS behavior of neurologically pathogenic IDP Aß40, we chanced upon a salt-driven reentrant condensation phenomenon, wherein Aß40 aggregation increases with low salt concentrations (25-50 mM), followed by a decline with further salt increments. An exploration of the thermodynamic and kinetic signatures of reentrant condensation unveils a nuanced interplay between protein electrostatics and ionic strength as potential drivers. Notably, the charged residues of the N-terminus exhibit a nonmonotonic response to salt screening, intricately linked to the recurrence of reentrant behavior in hydrophobic core-induced condensation. Intriguingly, our findings also unveil the reappearance of similar reentrant condensation phenomena under varying temperature conditions. Collectively, our study illuminates the profoundly context-dependent nature of Aß40s liquid-liquid phase separation behavior, extending beyond its intrinsic molecular framework, where microenvironmental cues wield significant influence over its aberrant functionality.
RESUMO
Adenosine triphosphate (ATP), ubiquitous in all living organisms, is conventionally recognized as a fundamental energy currency essential for a myriad of cellular processes. While its traditional role in energy metabolism requires only micromolar concentrations, the cellular content of ATP has been found to be significantly higher at the millimolar level. Recent studies have attempted to correlate this higher concentration of ATP with its nonenergetic role in maintaining protein homeostasis, leaving the investigation of ATP's nontrivial activities in biology an open question. Here, by coupling computer simulations and experiments, we uncover new insights into ATP's role as a cryoprotectant against cold-salt stress, highlighting the necessity for higher cellular ATP concentrations. We present direct evidence at charged silica interfaces, demonstrating ATP's ability to restore native intersurface interactions disrupted by combined cold-salt stress, thereby inhibiting cold-responsive aggregation in high-salt conditions. ATP desorbs salt cations from negatively charged surfaces through predominant interactions between ATP and the salt cations. Although the mode of ATP's action remains unchanged with temperature, the extent of interaction scales with temperature, requiring less ATP activity at lower temperatures, justifying the reason for reduction in cellular ATP content due to the cold effect, reported in previous experimental studies. The trend observed in inorganic nanostructures is recurrent and robustly transferable to charged protein interfaces. A thorough comparison of ATP's cryoprotective activity with traditionally known biological cryoprotectants (glycine and betaine) reveals ATP's greater efficiency. In retrospect, our findings highlight ATP's additional biological role in cryopreservation, expanding its potential biomedical applications by offering effective protection of cells from cryoinjuries and avoiding the significant challenges associated with the toxicity of organic cryoprotectants.
Assuntos
Trifosfato de Adenosina , Temperatura Baixa , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Dióxido de Silício/química , Crioprotetores/química , Crioprotetores/farmacologiaRESUMO
Natural selection has driven the convergence toward a selected set of osmolytes, endowing them with the necessary efficiency to manage stress arising from salt diversity. This study combines atomistic simulations and experiments to investigate how two osmolytes, glycine and betaine, individually modulate the Hofmeister ion ordering of alkali metal salts (LiCl, KCl, and CsCl) near a charged silica interface. Both osmolytes are found to prevent salt-induced aggregation of the charged entities, yet their mode and degree of relative modulation depend on their intricate interplay with specific salt cations. Betaine's ion-mediated surface interaction maintains Hofmeister ion ordering, whereas glycine alters the relative Hofmeister order of the cation by salt-specific ion desorption from the surface. Experimental validation through surface-enhanced Raman spectroscopy supports these findings, elucidating osmolyte-mediated alterations in interfacial water structures. These observations based on an inorganic interface are reciprocated in amyloid beta 40 dimerization dynamics, highlighting osmolytes' efficacy in mitigating salt-induced aggregation. A molecular analysis suggests that the differential modes of interaction, as found here for glycine and betaine, are prevalent across classes of zwitterionic osmolytes.
RESUMO
The aggregation of the protein α-synuclein into amyloid deposits is associated with multiple neurological disorders, including Parkinson's disease. Soluble amyloid oligomers are reported to exhibit higher toxicity than insoluble amyloid fibrils, with dimers being the smallest toxic oligomer. Small molecule drugs, such as fasudil, have shown potential in targeting α-synuclein aggregation and reducing its toxicity. In this study, we use atomistic molecular dynamics simulations to demonstrate how fasudil affects the earliest stage of aggregation, namely dimerization. Our results show that the presence of fasudil reduces the propensity for intermolecular contact formation between protein chains. Consistent with previous reports, our analysis confirms that fasudil predominantly interacts with the negatively charged C-terminal region of α-synuclein. However, we also observe transient interactions with residues in the charged N-terminal and hydrophobic NAC regions. Our simulations indicate that while fasudil prominently interacts with the C-terminal region, it is the transient interactions with residues in the N-terminal and NAC regions that effectively block the formation of intermolecular contacts between protein chains and prevent early dimerization of this disordered protein.
Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Simulação de Dinâmica Molecular , Multimerização Proteica , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , Humanos , Multimerização Proteica/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacosRESUMO
High dimensional nature of the chromosomal conformation contact map ('Hi-C Map'), even for microscopically small bacterial cell, poses challenges for extracting meaningful information related to its complex organization. Here we first demonstrate that an artificial deep neural network-based machine-learnt (ML) low-dimensional representation of a recently reported Hi-C interaction map of archetypal bacteria Escherichia coli can decode crucial underlying structural pattern. The ML-derived representation of Hi-C map can automatically detect a set of spatially distinct domains across E. coli genome, sharing reminiscences of six putative macro-domains previously posited via recombination assay. Subsequently, a ML-generated model assimilates the intricate relationship between large array of Hi-C-derived chromosomal contact probabilities and respective diffusive dynamics of each individual chromosomal gene and identifies an optimal number of functionally important chromosomal contact-pairs that are majorly responsible for heterogenous, coordinate-dependent sub-diffusive motions of chromosomal loci. Finally, the ML models, trained on wild-type E. coli show-cased its predictive capabilities on mutant bacterial strains, shedding light on the structural and dynamic nuances of ΔMatP30MM and ΔMukBEF22MM chromosomes. Overall our results illuminate the power of ML techniques in unraveling the complex relationship between structure and dynamics of bacterial chromosomal loci, promising meaningful connections between ML-derived insights and biological phenomena.
Assuntos
Cromossomos Bacterianos , Escherichia coli , Escherichia coli/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/química , Aprendizado de Máquina , Genoma Bacteriano , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/químicaRESUMO
Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson's disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.
Assuntos
Agregados Proteicos , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Conformação Proteica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Doença de Parkinson/metabolismoRESUMO
Living systems utilize sophisticated biochemical regulators and various signal transduction mechanisms to program bio-molecular assemblies and their associated functions. Creating synthetic assemblies that can replicate the functional and signal-responsive properties of these regulators, while also interfacing with biomolecules, holds significant interest within the realms of supramolecular chemistry and chemical biology. This pursuit not only aids in understanding the fundamental design principles of life but also introduces novel capabilities that contribute to the advancements in medical and therapeutic research. In this study, we present a cucurbit[7]uril (CB[7]) host-guest system designed to regulate the dynamics and functions of microtubules (MTs) in living cells. To establish communication between MTs and CB[7] and to reversibly control MT function through host-guest recognition, we synthesized a two-faced docetaxel-p-xylenediamine (Xyl-DTX) derivative. While Xyl-DTX effectively stabilized polymerized MTs, inducing MT bundling and reducing dynamics in GFP-α-tubulin expressing cells, we observed a significant reduction in its MT-targeted activity upon threading with CB[7]. Leveraging the reversible nature of the host-guest complexation, we strategically reactivated the MT stabilizing effect by programming the guest displacement reaction from the CB[7]·Xyl-DTX complex using a suitable chemical signal, namely a high-affinity guest. This host-guest switch was further integrated into various guest activation networks, enabling 'user-defined' regulatory control over MT function. For instance, we demonstrated programmable control over MT function through an optical signal by interfacing it with a photochemical guest activation network. Finally, we showcased the versatility of this supramolecular system in nanotechnology-based therapeutic approaches, where a self-assembled nanoparticle system was employed to trigger the MT-targeted therapeutic effect from the CB[7]·Xyl-DTX complex.
RESUMO
Nature has ingeniously developed specialized water transporters that effectively reject ions, including protons, while transporting water across membranes. These natural water channels, known as aquaporins (AQPs), have inspired the creation of Artificial Water Channels (AWCs). However, replicating superfast water transport with synthetic molecular structures that exclude salts and protons is a challenging task. This endeavor demands the coexistence of a suitable water-binding site and a selective filter for precise water transportation. Here, we present small-molecule hydrazides 1 b-1 d that self-assemble into a rosette-type nanochannel assembly through intermolecular hydrogen bonding and π-π stacking interactions, and selectively transport water molecules across lipid bilayer membranes. The experimental analysis demonstrates notable permeability rates for the 1 c derivative, enabling approximately 3.18×108 water molecules to traverse the channel per second. This permeability rate is about one order of magnitude lower than that of AQPs. Of particular significance, the 1 c ensures exclusive passage of water molecules while effectively blocking salts and protons. MD simulation studies confirmed the stability and water transport properties of the water channel assembly inside the bilayer membranes at ambient conditions.
RESUMO
Small modifications in the chemical structure of ligands are known to dramatically change their ability to inhibit the activity of a protein. Unraveling the mechanisms that govern these dramatic changes requires scrutinizing the dynamics of protein-ligand binding and unbinding at the atomic level. As an exemplary case, we have studied Glycogen Synthase Kinase-3ß (GSK-3ß), a multifunctional kinase that has been implicated in a host of pathological processes. As such, there is a keen interest in identifying ligands that inhibit GSK-3ß activity. One family of compounds that are highly selective and potent inhibitors of GSK-3ß is exemplified by a molecule termed COB-187. COB-187 consists of a five-member heterocyclic ring with a thione at C2, a pyridine substituted methyl at N3, and a hydroxyl and phenyl at C4. We have studied the inhibition of GSK-3ß by COB-187-related ligands that differ in a single heavy atom from each other (either in the location of nitrogen in their pyridine ring, or with the pyridine ring replaced by a phenyl ring), or in the length of the alkyl group joining the pyridine and the N3. The inhibition experiments show a large range of half-maximal inhibitory concentration (IC50) values from 10 nM to 10 µM, implying that these ligands exhibit vastly different propensities to inhibit GSK-3ß. To explain these differences, we perform Markov State Modeling (MSM) using fully atomistic simulations. Our MSM results are in excellent agreement with the experiments in that they accurately capture differences in the binding propensities of the ligands. The simulations show that the binding propensities are related to the ligands' ability to attain a compact conformation where their two aromatic rings are spatially close. We rationalize this result by sampling numerous binding and unbinding events via funnel metadynamics simulations, which show that indeed while approaching the bound state, the ligands prefer to be in their compact conformation. We find that the presence of nitrogen in the aromatic ring increases the probability of attaining the compact conformation. Protein-ligand binding is understood to be dictated by the energetics of interactions and entropic factors, like the release of bound water from the binding pockets. This work shows that changes in the conformational distribution of ligands due to atom-level modifications in the structure play an important role in protein-ligand binding.
Assuntos
Glicogênio Sintase Quinase 3 beta , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Cadeias de Markov , Ligantes , Piridinas/química , Piridinas/farmacologia , TermodinâmicaRESUMO
Bacterial membrane porins facilitate the translocation of small molecules while restricting large molecules, and this mechanism remains elusive at the molecular level. Here, we investigate the selective uptake of large cyclic sugars across an unusual passive membrane transporter, CymA, comprising a charged zone and a constricting N terminus segment. Using a combination of electrical recordings, protein mutagenesis and molecular dynamics simulations, we establish substrate translocation across CymA governed by the electrostatic pore properties and conformational dynamics of the constriction segment. Notably, we show that the variation in pH of the environment resulted in reversible modulation of the substrate binding site in the pore, thereby regulating charge-selective transport of cationic, anionic and neutral cyclic sugars. The quantitative kinetics of cyclic sugar translocation across CymA obtained in electrical recordings at different pHs are comparable with molecular dynamics simulations that revealed the transport pathway, energetics and favorable affinity sites in the pore for substrate binding. We further define the molecular basis of cyclic sugar translocation and establish that the constriction segment is flexible and can reside inside or outside the pore, regulating substrate translocation distinct from the ligand-gated transport mechanism. Our study provides novel insights into energy-independent large molecular membrane transport for targeted drug design strategies.
RESUMO
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Assuntos
Neoplasias da Mama , Hidrogéis , Imunoterapia , Hidrogéis/química , Hidrogéis/administração & dosagem , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Feminino , Imunoterapia/métodos , Animais , Microambiente Tumoral , Sistemas de Liberação de MedicamentosRESUMO
Electrode-electrolyte interfaces play a decisive role in electrochemical charge accumulation and transfer processes. Theoretical modelling of these interfaces is critical to decipher the microscopic details of such phenomena. Different force field-based molecular dynamics protocols are compared here in a view to connect calculated and experimental charge density-potential relationships. Platinum-aqueous electrolyte interfaces are taken as a model. The potential of using experimental charge density-potential curves to transform cell voltage into electrode potential in force-field molecular dynamics simulations, and the need for that purpose of developing simulation protocols that can accurately calculate the double-layer capacitance, are discussed.
RESUMO
The spatial arrangement of ribosomes and chromosome in Escherichia coli's cytoplasm challenges conventional wisdom. Contrary to the notion of ribosomes acting as inert crowders to the chromosome in the cytoplasm, here we propose a nuanced view by integrating a wide array of experimental data sets into a polymer-based computer model. A set of data-informed computer simulations determines that a delicate balance of attractive and repulsive interactions between ribosomes and the chromosome is required in order to reproduce experimentally obtained linear densities and brings forth the view that ribosomes are not mere inert crowders in the cytoplasm. The model finds that the ribosomes represent themselves as a poor solvent for the chromosome with a 50 nm mesh size, consistent with previous experimental analysis. Our multidimensional analysis of ribosome distribution, both free (30S and 50S) and bound (70S polysome), uncovers a relatively less pronounced segregation pattern than previously thought. Notably, we identify a ribosome-rich central region within the innermost core of the nucleoid. Moreover, our exploration of the chromosome mesh size and the conformation of bound ribosomes suggests that these ribosomes maintain elongated shapes, enabling them to navigate through the chromosome mesh and access the central core. This dynamic localization challenges the static segregation model and underscores the pivotal role of ribosome-chromosome interactions in cellular media.
Assuntos
Escherichia coli , Ribossomos , Escherichia coli/genética , Ribossomos/metabolismo , CromossomosRESUMO
Despite considerable emphasis on advancing artificial ion channels, progress is constrained by the limited availability of small molecules with the necessary attributes of self-assembly and ion selectivity. In this study, a library of small molecules based on 5-haloisophthalamide and a non-halogenated isophthalamide were examined for their ion transport properties across the lipid bilayer membranes, and the finding demonstrates that the di-hexyl-substituted 5-iodoisophthalamide derivative exhibits the highest level of activity. Furthermore, it was established that the highest active compound facilitates the selective chloride transport that occurs via an antiport-mediated mechanism. The crystal structure of the compound unveils a distinctive self-assembly of molecules, forming a zig-zag channel pore that is well-suited for the permeation of anions. Planar bilayer conductance measurements proved the formation of chloride selective channels. A molecular dynamics simulation study, relying on the self-assembled component derived from the crystal structure, affirmed the paramount significance of intermolecular hydrogen bonding in the formation of supramolecular barrel-rosette structures that span the bilayer. Furthermore, it was demonstrated that the transport of chloride across the lipid bilayer membrane is facilitated by the synergistic effects of halogen bonding and hydrogen bonding within the channel.
RESUMO
The chromosome of archetypal bacteria E. coli is known for a complex topology with a 4.6 × 106 base pairs (bp) long sequence of nucleotides packed within a micrometer-sized cellular confinement. The inherent organization underlying this chromosome eludes general consensus due to the lack of a high-resolution picture of its conformation. Here we present our development of an integrative model of E. coli at a 500 bp resolution (https://github.com/JMLab-tifrh/ecoli_finer), which optimally combines a set of multiresolution genome-wide experimentally measured data within a framework of polymer based architecture. In particular the model is informed with an intragenome contact probability map at 5000 bp resolution derived via the Hi-C experiment and RNA-sequencing data at 500 bp resolution. Via dynamical simulations, this data-driven polymer based model generates an appropriate conformational ensemble commensurate with chromosome architectures that E. coli adopts. As a key hallmark of the E. coli chromosome the model spontaneously self-organizes into a set of nonoverlapping macrodomains and suitably locates plectonemic loops near the cell membrane. As novel extensions, it predicts a contact probability map simulated at a higher resolution than precedent experiments and can demonstrate segregation of chromosomes in a partially replicating cell. Finally, the modular nature of the model helps us devise control simulations to quantify the individual role of key features in hierarchical organization of the bacterial chromosome.
Assuntos
Cromossomos Bacterianos , Escherichia coli , Escherichia coli/genética , Cromossomos Bacterianos/genética , Cromossomos , Conformação Molecular , PolímerosRESUMO
We present our perspective on the role of osmolytes in mitigating abiotic stresses such as hypersalinity and sudden temperature changes. While the stabilizing effect of osmolytes on protein tertiary structures has been extensively studied, their direct impact on abiotic stress factors has eluded mainstream attention. Via highlighting a set of recent success stories of a joint venture of computer simulations and experimental measurements, we summarize the mechanistic insights into osmolytic action, particularly in the context of salt stress and combined cold-salt stress at the interface of biomolecular surfaces and saline environments. We stress the importance of chemical specificity in osmolytic activity, the interplay of differential osmolytic behaviors against heterogeneous salt stress, and the capability of osmolytes to adopt combined actions. Additionally, we discuss the potential of incorporating nanomaterial-based systems to enrich our understanding of osmolyte bioactions and facilitate their practical applications. We anticipate that this discourse will inspire interdisciplinary collaborations and motivate further investigations on osmolytes, ultimately broadening their applications in the fields of health and disease.
Assuntos
Resposta ao Choque Frio , Proteínas , Proteínas/química , Temperatura BaixaRESUMO
We identified a multisubstrate-bound state, hereby referred as a 3site state, in cytochrome P450cam via integrating molecular dynamics simulation with nuclear magnetic resonance (NMR) pseudocontact shift measurements. The 3site state is a result of simultaneous binding of three camphor molecules in three locations around P450cam: (a) in a well-established "catalytic" site near heme, (b) in a kink-separated "waiting" site along channel-1, and (c) in a previously reported "allosteric" site at E, F, G, and H helical junctions. These three spatially distinct binding modes in the 3site state mutually communicate with each other via homotropic allostery and act cooperatively to render P450cam functional. The 3site state shows a significantly superior fit with NMR pseudo contact shift (PCS) data with a Q-score of 0.045 than previously known bound states and consists of D251 free of salt-bridges with K178 and R186, rendering the enzyme functionally primed. To date, none of the reported cocomplex of P450cam with its redox partner putidaredoxin (pdx) has been able to match solution NMR data and controversial pdx-induced opening of P450cam's channel-1 remains a matter of recurrent discourse. In this regard, inclusion of pdx to the 3site state is able to perfectly fit the NMR PCS measurement with a Q-score of 0.08 and disfavors the pdx-induced opening of channel-1, reconciling previously unexplained remarkably fast hydroxylation kinetics with a koff of 10.2 s-1. Together, our findings hint that previous experimental observations may have inadvertently captured the 3site state as an in vitro solution state, instead of the catalytic state alone, and provided a distinct departure from the conventional understanding of cytochrome P450.
Assuntos
Cânfora 5-Mono-Oxigenase , Pseudomonas putida , Cânfora 5-Mono-Oxigenase/química , Ligação Proteica , Ferredoxinas/química , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica MolecularRESUMO
Specialized sensing mechanisms in bacteria enable the identification of cognate ligands with remarkable selectivity in highly xenobiotic-polluted environments where these ligands are utilized as energy sources. Here, via integrating all-atom computer simulation, biochemical assay, and isothermal titration calorimetry measurements, we determine the molecular basis of MopR, a phenol biosensor's complex selection process of ligand entry. Our results reveal a set of strategically placed selectivity filters along the ligand entry pathway of MopR. These filters act as checkpoints, screening diverse aromatic ligands at the protein surface based on their chemical features and sizes. Ligands meeting specific criteria are allowed to enter the sensing site in an orientation-dependent manner. Sequence and structural analyses demonstrate the conservation of this ligand entry mechanism across the sensor class, with individual amino acids along the selectivity filter path playing a critical role in ligand selection. Together, this investigation highlights the importance of interactions with the ligand entry pathway, in addition to interactions within the binding pocket, in achieving ligand selectivity in biological sensing. The findings enhance our understanding of ligand selectivity in bacterial phenol biosensors and provide insights for rational expansion of the biosensor repertoire, particularly for the biotechnologically relevant class of aromatic pollutants.
RESUMO
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 µg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient â¢OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
RESUMO
Phosphorylation of intrinsically disordered proteins/regions (IDPs/IDRs) has a profound effect in biological functions such as cell signaling, protein folding or unfolding, and long-range allosteric effects. However, here we focus on two IDPs, namely 83-residue IDR transcription factor Ash1 and 92-residue long N-terminal region of CDK inhibitor Sic1 protein, found in Saccharomyces cerevisiae, for which experimental measurements of average conformational properties, namely, radius of gyration and structure factor, indicate negligible changes upon phosphorylation. Here, we show that a judicious dissection of conformational ensemble via combination of unsupervised machine learning and extensive molecular dynamics (MD) trajectories can highlight key differences and similarities among the phosphorylated and wild-type IDP. In particular, we develop Markov state model (MSM) using the latent-space dimensions of an autoencoder, trained using multi-microsecond long MD simulation trajectories. Examination of structural changes among the states, prior to and upon phosphorylation, captured several similarities and differences in their backbone contact maps, secondary structure, and torsion angles. Hydrogen bonding analysis revealed that phosphorylation not only increases the number of hydrogen bonds but also switches the pattern of hydrogen bonding between the backbone and side chain atoms with the phosphorylated residues. We also observe that although phosphorylation introduces salt bridges, there is a loss of the cation-π interaction. Phosphorylation also improved the probability for long-range hydrophobic contacts and also enhanced interaction with water molecules and improved the local structure of water as evident from the geometric order parameters. The observations on these machine-learnt states gave important insights, as it would otherwise be difficult to determine experimentally which is important, if we were to understand the role of phosphorylation of IDPs in their biological functions.