Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(1): e4910, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38213327

RESUMO

Tears contain numerous secreted factors, enzymes, and proteins that help in maintaining the homeostatic condition of the eye and also protect it from the external environment. However, alterations to these enzymes and/or proteins during pathologies such as mechanical injury and viral or fungal infections can disrupt the normal ocular homeostasis, further contributing to disease development. Several tear film components have a significant role in curbing disease progression and promoting corneal regeneration. Additionally, several factors related to disease progression are secreted into the tear film, thereby serving as a valuable reservoir of biomarkers. Tears are readily available and can be collected via non-invasive techniques or simply from contact lenses. Tears can thus serve as a valuable and easy source for studying disease-specific biomarkers. Significant advancements have been made in recent years in the field of tear film proteomics, lipidomics, and transcriptomics to allow a better understanding of how tears can be utilized to gain insight into the etiology of diseases. These advancements have enabled us to study the pathophysiology of various disease states using tear samples. However, the mechanisms by which tears help to maintain corneal homeostasis and how they are able to form the first line of defense against pathogens remain poorly understood and warrant detailed in vitro studies. Herein, we have developed an in vitro assay to characterize the functional importance of patient isolated tears and their components on corneal epithelial cells. This novel approach closely mimics real physiological conditions and could help the researchers gain insight into the underlying mechanisms of ocular pathologies and develop new treatments. Key features • This method provides a new technique for analyzing the effect of tear components on human corneal epithelial cells. • The components of the tears that are altered in response to diseases can be used as a biomarker for detecting ocular complications. • This procedure can be further employed as an in vitro model for assessing the efficacy of drugs and discover potential therapeutic interventions.

2.
Exp Eye Res ; 240: 109771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163580

RESUMO

HSV1 presents as epithelial or stromal keratitis or keratouveitis and can lead to sight-threatening complications. KLF4, a critical transcription factor, and regulator of cell growth and differentiation, is essential in corneal epithelium stratification and homeostasis. Here, we want to understand the epigenetic modification specifically the methylation status of KLF4 in epithelium samples of HSV1 keratitis patients. After obtaining consent, epithelial scrapes were collected from 7 patients with clinically diagnosed HSV1 keratitis and 7 control samples (patients undergoing photorefractive keratectomy). Genomic DNA was isolated from the collected samples using the Qiagen DNeasy Kit. Subsequently, bisulfite modification was performed. The bisulphite-modified DNA was then subjected to PCR amplification using specific primers designed to target the KLF4, ACTB gene region, allowing for the amplification of methylated and unmethylated DNA sequences. The amplified DNA products were separated and visualized on a 3% agarose gel. KLF4 hypermethylation was found in 6 out of 7 (85.71%) eyes with viral keratitis, while 1 eye showed hypomethylation compared to PRK samples. Out of these 6, there were 2 each of epithelial dendritic keratitis, epithelial geographical keratitis, and neurotrophic keratitis. The patient with hypomethylated KLF4 had a recurrent case of HSV1 keratitis with multiple dendrites and associated vesicular lesions of the lip along with a history of fever. KLF4 hypermethylation in most viral keratitis cases indicated the under functioning of KLF4 and could indicate a potential association between KLF4 hypermethylation and the development or progression of HSV1 keratitis.


Assuntos
Epitélio Corneano , Infecções Oculares Virais , Ceratite , Humanos , DNA , Metilação de DNA , Epitélio Corneano/patologia , Infecções Oculares Virais/genética , Infecções Oculares Virais/patologia , Ceratite/patologia
3.
Cell Rep ; 42(10): 113203, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777960

RESUMO

Lipid droplets (LDs) play a crucial role in maintaining cellular lipid balance by storing and delivering lipids as needed. However, the intricate lipolytic pathways involved in LD turnover remain poorly described, hindering our comprehension of lipid catabolism and related disorders. Here, we show a function of the small GTPase ARL8B in mediating LD turnover in lysosomes. ARL8B-GDP localizes to LDs, while ARL8-GTP predominantly favors lysosomes. GDP binding induces a conformation with an exposed N-terminal amphipathic helix, enabling ARL8B to bind to LDs. By associating with LDs and lysosomes, and with its property to form a heterotypic complex, ARL8B mediates LD-lysosome contacts and efficient lipid transfer between these organelles. In human macrophages, this ARL8B-dependent LD turnover mechanism appears as the major lipolytic pathway. Our finding opens exciting possibilities for understanding the molecular mechanisms underlying LD degradation and its potential implications for inflammatory disorders.


Assuntos
Gotículas Lipídicas , Proteínas Monoméricas de Ligação ao GTP , Humanos , Gotículas Lipídicas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Lisossomos/metabolismo , Lipídeos , Metabolismo dos Lipídeos , Fatores de Ribosilação do ADP/metabolismo
4.
Pathogens ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839533

RESUMO

Purpose: Failure of rapid re-epithelialization within 10-14 days after corneal injury, even with standard supportive treatment, is referred to as persistent corneal epithelial (CE) defect (PED). Though an array of genes regulates reepithelization, their mechanisms are poorly understood. We sought to understand the network of genes driving the re-epithelialization in PED. Method: After obtaining informed consent, patients underwent an ophthalmic examination. Epithelial scrapes and tears samples of six PED patients and six individuals (control) undergoing photorefractive keratectomy (PRK) were collected. RNA isolation and quantification were performed using either the epithelial scrape taken from PED patients or from HCLE cells treated with control tears or tears of PED patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of a few important genes in CE homeostasis, inflammation, and cell-cell communication, viz., Kruppel-like factor 4 (KLF4), GPX4, IL6, TNFα, STING, IL8, desmoglein, and E-cadherin, among others. Their expressions were normalized with their respective housekeeping genes and fold changes were recorded. KLF4 localization and MMPs activity was carried out via immunofluorescence and zymography, respectively. Results: KLF4, a transcription factor important for CE homeostasis, was upregulated in tears-treated HCLE cells and downregulated in PED patients compared to the healthy PRK group. Cell-cell communication genes were also upregulated in tears-treated cells, whereas they were downregulated in the PED tissue group. Genes involved in proinflammation (IL6, 282-fold; TNFα, 43-fold; IL8, 4.2-fold) were highly upregulated in both conditions. MMP9 activity increased upon tears treatment. Conclusions: This study suggests that tears create an acute proinflammatory milieu driving the PED disease pathology, whereas the PED patients scrapes are an indicator of the chronic stage of the disease. Interferons, pro-inflammatory genes, and their pathways are involved in PED, which can be a potential target for inducing epithelialization of the cornea.

5.
Curr Microbiol ; 80(2): 74, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631599

RESUMO

Green synthesis of nanoparticles provides numerous advantages over physical and chemical methods because of low toxicity, high yields, cost-effectiveness, environmentally benign, and energy efficiency. Therefore, we focused on the facile and green synthesis of isotropic silver nanoparticles using the metabolic extract of Cytobacillus kochii. During synthesis, the physicochemical parameters were optimized and validated using the response surface methodology statistical tool. The presence of potent bioactive compounds that aid in the biofabrication of nanoparticles was identified in the gas chromatography-mass spectroscopy analysis and the synthesis was confirmed by surface plasmon resonance peak at 420 nm. Characterization of nanoparticles was performed by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and X-ray diffraction. The synthesized nanoparticles showed potent antioxidant properties and displayed an excellent catalytic reduction potential in the degradation of hazardous dyes, such as methylene blue, phenol red, and 4-nitrophenol. Furthermore, compared to the chemically synthesized silver nanoparticles and crude extract, the biogenic silver nanoparticles exhibited a broad-spectrum antimicrobial potential. Our results demonstrate that the reported silver nanoparticles with unique characteristics might be of great promise as biomedical and catalytic agents for industrial applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/química , Prata/farmacologia , Nanopartículas Metálicas/química , Baías , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Água , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química
6.
Front Immunol ; 12: 722735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603294

RESUMO

Lipid metabolism plays a complex and dynamic role in host-pathogen interaction during Mycobacterium tuberculosis infection. While bacterial lipid metabolism is key to the success of the pathogen, the host also offers a lipid rich environment in the form of necrotic caseous granulomas, making this association beneficial for the pathogen. Accumulation of the neutral lipid triglyceride, as lipid droplets within the cellular cuff of necrotic granulomas, is a peculiar feature of pulmonary tuberculosis. The role of triglyceride synthesis in the TB granuloma and its impact on the disease outcome has not been studied in detail. Here, we identified diacylglycerol O-acyltransferase 1 (DGAT1) to be essential for accumulation of triglyceride in necrotic TB granulomas using the C3HeB/FeJ murine model of infection. Treatment of infected mice with a pharmacological inhibitor of DGAT1 (T863) led to reduction in granuloma triglyceride levels and bacterial burden. A decrease in bacterial burden was associated with reduced neutrophil infiltration and degranulation, and a reduction in several pro-inflammatory cytokines including IL1ß, TNFα, IL6, and IFNß. Triglyceride lowering impacted eicosanoid production through both metabolic re-routing and via transcriptional control. Our data suggests that manipulation of lipid droplet homeostasis may offer a means for host directed therapy in Tuberculosis.


Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Granuloma/tratamento farmacológico , Mycobacterium tuberculosis/imunologia , Triglicerídeos/biossíntese , Tuberculose/tratamento farmacológico , Animais , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Granuloma/microbiologia , Granuloma/patologia , Interações Hospedeiro-Patógeno , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/efeitos dos fármacos , Infiltração de Neutrófilos , Tuberculose/complicações , Tuberculose/imunologia , Tuberculose/microbiologia
7.
EMBO Mol Med ; 13(12): e14544, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672091

RESUMO

An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Glicoproteína da Espícula de Coronavírus
8.
Hum Vaccin Immunother ; 16(10): 2389-2402, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32078405

RESUMO

Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/terapia , Vírus Oncolíticos/genética
9.
Hum Vaccin Immunother ; 14(7): 1679-1685, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300685

RESUMO

Adenoviral vector has been employed as one of the most efficient means against infectious diseases and cancer. It can be genetically modified and armed with foreign antigens to elicit specific antibody responses and T cell responses in hosts as well as engineered to induce apoptosis in cancer cells. The chimpanzee adenovirus-based vector is one kind of novel vaccine carriers whose unique features and non-reactivity to pre-existing human adenovirus neutralizing antibodies makes it an outstanding candidate for vaccine research and development. Here, we review the different strategies for constructing chimpanzee adenoviral vectors and their applications in recent clinical trials and also discuss the oncolytic virotherapy and immunotherapy based on chimpanzee adenoviral vectors.


Assuntos
Adenovirus dos Símios/genética , Vetores Genéticos , Vacinas/genética , Adenovírus Humanos/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunoterapia , Camundongos , Terapia Viral Oncolítica , Pan troglodytes/virologia , Linfócitos T/imunologia , Vacinas/imunologia
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 90-102, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28441541

RESUMO

Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.


Assuntos
Floroglucinol/análogos & derivados , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Calorimetria , Humanos , Simulação de Acoplamento Molecular , Floroglucinol/química , Floroglucinol/metabolismo , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
11.
Chem Commun (Camb) ; 53(22): 3185-3188, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28180213

RESUMO

In this work, we report a single-site, heterogeneous Pd(ii)-NHC-based oxidative C-H activation catalyst, designed on a self-supported coordination polymer platform. The system has been applied successfully for selective arene C-H monohalogenation reactions affording a good degree of efficiency and reusability. Control experiments suggested that the Ru(ii)-terpyridine-based coordination network scaffolding the covalently attached Pd(ii)-NHC catalytic centres was highly robust under oxidizing conditions and rendered superior activity than the homogeneous counterpart.

12.
Int J Med Microbiol ; 306(8): 657-665, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670078

RESUMO

Vibrio cholera survival in an aquatic environment depends on chitin utilization pathway that requires two factors, chitin binding protein and chitinases. The chitinases and the chitin utilization pathway are regulated by a two-component sensor histidine kinase ChiS in V. cholerae. In recent studies these two factors are also shown to be involved in V. cholerae pathogenesis. However, the role played by their upstream regulator ChiS in pathogenesis is yet to be known. In this study, we investigated the activation of ChiS in presence of mucin and its functional role in pathogenesis. We found ChiS is activated in mucin supplemented media. The isogenic chiS mutant (ChiS-) showed less growth compared to the wild type strain (ChiS+) in the presence of mucin supplemented media. The ChiS- strain also showed highly retarded motility as well as mucin layer penetration in vitro. Our result also showed that ChiS was important for adherence and survival in HT-29 cell. These observations indicate that ChiS is activated in presence of intestinal mucin and subsequently switch on the chitin utilization pathway. In animal models, our results also supported the in vitro observation. We found reduced fluid accumulation and colonization during infection with ChiS- strain. We also found ChiS- mutant with reduced expression of ctxA, toxT and tcpA. The cumulative effect of these events made V. cholerae ChiS- strain hypovirulent. Hence, we propose that ChiS plays a vital role in V. cholerae pathogenesis.


Assuntos
Histidina Quinase/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Linhagem Celular , Toxina da Cólera/metabolismo , Meios de Cultura/química , Proteínas de Fímbrias/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Células Caliciformes/microbiologia , Histidina Quinase/genética , Humanos , Locomoção , Camundongos , Viabilidade Microbiana , Mucinas/metabolismo , Coelhos , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Vibrio cholerae/crescimento & desenvolvimento
13.
Int J Med Microbiol ; 306(7): 554-565, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27389679

RESUMO

Neonatal sepsis is the invasion of microbial pathogens into blood stream and is associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. The increased serum levels of cytokines were found to correlate with the severity and mortality in course of sepsis. There have been no reports on the role of microbial proteases in stimulation of proinflammatory response in neonatal sepsis. We have identified YghJ, a secreted metalloprotease from a neonatal septicemic Escherichia coli (NSEC) isolate. The protease was partially purified from culture supernatant by successive anion and gel filtration chromatography. MS/MS peptide sequencing of the protease showed homology with YghJ. YghJ was cloned, expressed and purified in pBAD TOPO expression vector. YghJ was found to be proteolytically active against Methoxysuccinyl Ala-Ala-Pro-Met-p-nitroanilide oligopeptide substrate, but not against casein and gelatin. YghJ showed optimal activity at pH 7-8 and at temperatures 37-40°C. YghJ showed clear changes in cellular morphologies of Int407, HT-29 and HEK293 cells. YghJ stimulated the secretion of cytokines IL-1α, IL-1ß and TNF-α in murine macrophages (RAW 264.7) and IL-8 from human intestinal epithelial cells (HT-29). YghJ also down-regulated the production of anti-inflammatory cytokines such as IL-10. YghJ is present in both septicemic (78%) and fecal E. coli isolates (54%). However, expression and secretion of YghJ is significantly higher among the septicemic (89%) than the fecal isolates (33%). This is the first study to show the role of a microbial protease, YghJ in triggering proinflammatory response in NSEC.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Metaloproteases/metabolismo , Sepse Neonatal/microbiologia , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Cromatografia em Gel , Cromatografia por Troca Iônica , Citocinas/metabolismo , Estabilidade Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteases/química , Metaloproteases/isolamento & purificação , Camundongos , Especificidade por Substrato , Espectrometria de Massas em Tandem , Temperatura , Fatores de Virulência/química , Fatores de Virulência/isolamento & purificação
14.
Can J Microbiol ; 62(3): 201-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26849349

RESUMO

Vibrio cholerae exochitinase ChiA2 plays a key role in acquisition of nutrients by chitin hydrolysis in the natural environment as well as in pathogenesis in the intestinal milieu. In this study we demonstrate the importance of ChiA2 in horizontal gene transfer in the natural environment. We found that the expression of ChiA2 and TfoX, the central regulator of V. cholerae horizontal gene transfer, varied with changes in environmental conditions. The activity of ChiA2 was also dependent on these conditions. In 3 different environmental conditions tested here, we observed that the supporting environmental condition for maximum expression and activity of ChiA2 was 20 °C, pH 5.5, and 100 mmol/L salinity in the presence of chitin. The same condition also induced TfoX expression and was favorable for horizontal gene transfer in V. cholerae. High-performance liquid chromatography analysis showed that ChiA2 released a significant amount of (GlcNAc)2 from chitin hydrolysis under the favorable condition. We hypothesized that under the favorable environmental condition, ChiA2 was upregulated and maximally active to produce a significant amount of (GlcNAc)2 from chitin. The same environmental condition also induced tfoX expression, followed by its translational activation by the (GlcNAc)2 produced, leading to efficient horizontal gene transfer.


Assuntos
Transferência Genética Horizontal , Hexosaminidases/genética , Vibrio cholerae/genética , Hexosaminidases/fisiologia , Transformação Genética , Vibrio cholerae/enzimologia , Vibrio cholerae/crescimento & desenvolvimento
15.
PLoS One ; 9(9): e103119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244128

RESUMO

In aquatic environments, Vibrio cholerae colonizes mainly on the chitinous surface of copepods and utilizes chitin as the sole carbon and nitrogen source. Of the two extracellular chitinases essential for chitin utilization, the expression of chiA2 is maximally up-regulated in host intestine. Recent studies indicate that several bacterial chitinases may be involved in host pathogenesis. However, the role of V. cholerae chitinases in host infection is not yet known. In this study, we provide evidence to show that ChiA2 is important for V. cholerae survival in intestine as well as in pathogenesis. We demonstrate that ChiA2 de-glycosylates mucin and releases reducing sugars like GlcNAc and its oligomers. Deglycosylation of mucin corroborated with reduced uptake of alcian blue stain by ChiA2 treated mucin. Next, we show that V. cholerae could utilize mucin as a nutrient source. In comparison to the wild type strain, ΔchiA2 mutant was 60-fold less efficient in growth in mucin supplemented minimal media and was also ∼6-fold less competent to survive when grown in the presence of mucin-secreting human intestinal HT29 epithelial cells. Similar results were also obtained when the strains were infected in mice intestine. Infection with the ΔchiA2 mutant caused ∼50-fold less fluid accumulation in infant mice as well as in rabbit ileal loop compared to the wild type strain. To see if the difference in survival of the ΔchiA2 mutant and wild type V. cholerae was due to reduced adhesion of the mutant, we monitored binding of the strains on HT29 cells. The initial binding of the wild type and mutant strain was similar. Collectively these data suggest that ChiA2 secreted by V. cholerae in the intestine hydrolyzed intestinal mucin to release GlcNAc, and the released sugar is successfully utilized by V. cholerae for growth and survival in the host intestine.


Assuntos
Quitinases/metabolismo , Regulação Bacteriana da Expressão Gênica , Intestinos/microbiologia , Vibrio cholerae/metabolismo , Animais , Quitinases/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Mucinas/metabolismo , Coelhos , Vibrio cholerae/genética
16.
Dalton Trans ; 43(24): 9356-62, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24828753

RESUMO

Modulating the functionality of a synthetic transition metal complex by external stimuli is highly important for designing switchable systems. One prerequisite for achieving such dynamic activity is to generate molecular systems with in situ controllable electronic properties. To achieve dynamic control of the electronic properties, here we report the synthesis of two new N-heterocyclic carbene (NHC)-pyridyl Ir(III)/Ir(III) (3) and Ru(II)/Ru(II) (4) bimetallic complexes. These complexes include a latent stimuli-responsive labile site. This is utilized successfully for the on-demand, real-time modulation of the electronic properties of the systems in a reversible manner using external agents, as probed by spectroscopic and electrochemical techniques. These results display promising scope in the domain of transition metal-NHC chemistry, which can guide us in developing future smart organometallic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA